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Motivation

• Velocity/friction force control during sliding

• Ability to reach desired targeted behavior

• Achieve fast transient times

• The applied control is limited in strength

• Requires only limited accessibility

• Uses global variables 



Friction can be manipulated by applying small perturbations to
accessible elements and parameters of the sliding system. 

• Using a surface force apparatus, modified for measuring friction forces while 
simultaneously inducing normal (out-of-plane) vibrations between two boundary-
lubricated sliding surfaces, load- and frequency-dependent transitions between a 
number of "dynamical friction" states have been observed [1]. 

• Extensive grand-canonical molecular dynamics simulations [2] revealed the nature
of the dynamical states of confined sheared molecular films, their structural 
mechanisms, and the molecular scale mechanisms underlying transitions between 
them. 

• Methods to control friction in systems under shear that enable to eliminate chaotic 
stick-slip motion were proposed in [3]. Significant changes in frictional responses 
were observed in the two-plate model [4] by modulating the normal response to 
lateral motion [5]. 

• The surface roughness and the thermal noise are expected to play a significant role 
in deciding control strategies at the micro and the nano-scale [6].  
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• Experimentally, friction can be manipulated by applying in-plane and 
out-of-plane surface vibrations. This is realized, for example, by the use of 
a quartz piezo-element that oscillates the surface of frictional contact. The 
frequency of such an oscillation may vary from few Hz to MHz, and, 
perhaps to GHz limit using micro/nano cantilevers 

• Our experiments demonstrate that already very slow (in the range of 100 
Hz) vibrations can significantly alter the frictional behavior of the sliding 
system. This evidence  strongly indicates the existence of a much slower 
time scale that governs the dynamics of the frictional system. 

• From the algorithmic standpoint, friction can be controlled by applying 
small perturbations to accessible elements and parameters of the sliding 
system. Here, the challenge is to design control strategies that require only 
minimal accessibility. 

• Both feedback and non-feedback means of control have been considered 
and speed, accessibility, and predictability considerations are those that 
prevail in choosing the optimal best strategy. 
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Time series of the center of mass velocity (in dimensionless units). The red line shows the target 
velocity function,  v(t) = 0.2 + 0.2 sin(0.05 t),  and the blue line shows the center of mass 
velocity.  The control is applied every time step, starting at t = 250.  The parameters are: N = 15, 
� = 0.1, f = 0.3, � = 0.26, � = 1, b = 0, and � = 7.

Friction Control



Non-Lipschitzian Dynamics 

1/ 7( )t� �� �
�Consider:

Lipschitz condition: the derivatives of the right-hand side of 
the dynamical equations with respect to the state variables
is bounded

At the equilibrium point, � = 0, Lipschitz condition is violated, 
since 6/7/ (1/7)� � ��

� � ��� tends to -� as � tends to zero.

Thus the equilibrium point � = 0 is an attractor with “infinite”
attraction power (terminal attractor). 



Non-Lipschitzian Control of Friction 
for AFM and SFM-type experiments
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Non-Lipschitzian Control of Friction
for QCM-type of experiment

Control:
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XYZ translational stage
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Friction Control - a Model
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xj is the position of the particle j
m is the mass of the sliding particle
� is the dissipation coefficient
U is the interaction potential
V is the surface potential
f is the external driving force
� is the thermal noise (temperature 
effect)
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The Model

1 1sin ( 2 )j j j j j jx x x f x x x Control� �
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Driven Frenkel-Kontorova Model

xj - position of the particle j
� - single particle dissipation
f - external forcing
� - the ratio of the interparticle

to substrate interactions 
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Natural Motion

• Free Sliding: v � f/�

• No sliding (fixed point): v = 0

• Low velocity (stick - slip) motion: v = O(0.1)

• Chaotic motion: 0 < v < f/�
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Values of the Sliding Velocities

Only particular values of velocities 
of the “uncontrolled motion” can be observed:

v = f/� - free sliding

v = vchaotic = 1.8 (just a single value 
for given parameter set)

v = kv0   here 
1

1/ 2 1/ 2
0

2 cos( ) ( )c
fv

mN
� �

� �
� �

�

�

� �

Y. Braiman, F. Family, and H. G. E. Hentschel,
Phys. Rev. E 53, R3005 (1996)

N is the number of particles
and k is an integer
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Figure: Performance of control algorithm for four values of the center of mass 
velocity ( 0, 0.5, 1.0, and 3.0) for a 15 - particle array.  Control was initiated at 
t=2000.  Blue lines show time series of the center of mass velocities, while red lines 
show the control. In all cases, the desired behavior was rapidly achieved.   All the 
units are dimensionless and initial conditions were chosen randomly.

1. New algorithm developed
–fast and efficient
–enables to induce any arbitrarily 
chosen behavior compatible with 
the system's dynamics.

2. Methodology is based on two 
original concepts:

– non-Lipschitzian dynamics 
– global  behavior targeting

3. Quickly reaches targeted 
behavior.

Y. Braiman, J. Barhen, & V. Protopopescu, 
Physical Review Letters 90, 094301 (2003).

Demonstration of Friction Control



Strength of the Control
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Fast Transient Times
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Effect of the Repeller
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Control Towards Desired Functional Behavior
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Pulsed Control
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Pulsed Control Schematic
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Step-Like Control
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Modeling the AFM Motion
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                         Cantilever: MFM, material unknown
Sample: Si wafer

Experimental
Numerical Simulations

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

MFM Tip on silicon wafer
scan rate = 2 Hz
No oscillation

Fr
ic

tio
n 

Fo
rc

e 
(A

.U
.)

Scan Speed (�m/sec)



Laser

Position Sensitive 
Detector

Piezoelectric Actuator

Sample

Function 
Generator

SP
Cantilever

Friction Measurement

Experimental Setup

Mica
Gold

Mercapto
Propionic
acid



Dependence on Oscillation Amplitude
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Dependence on the Frequency of Oscillations
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Resonance Response
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Summary
We derived the properties of a general control algorithm for 
quantities describing global features of nonlinear extended 
mechanical systems.  The control algorithm is based on the 
concepts of non-Lipschitzian dynamics and global targeting.  
We showed that:  

(i) Certain average quantities of the controlled system can 
be driven – exactly or approximately – towards desired 
targets which become linearly stable attractors for the 
system’s dynamics;  

(ii) The basins of attraction of these targets are reached in 
very short times; and  

(iii) While within reasonably broad ranges, the time-scales 
of the control and of the intrinsic dynamics may be 
quite different, this disparity does not affect 
significantly the overall efficiency of the proposed 
scheme, up to natural fluctuations.   
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