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Abstract 
Identically prepared samples of Fe0.85Ni0.15 were annealed either in the ambient magnetic 
field or in a field of 29 Tesla. Room temperature X-ray powder diffraction measurements 
performed after magnetic annealing showed that the ratio of the volume of γ  phase to α  
phase is decreased in the field annealed sample by a factor of two. First principles 
calculations of the magnetic structure in the presence of a magnetic field are used to 
compute the resulting change in free energy. Analysis in terms of the phase diagram 
calculated with and without a magnetic field is in substantial agreement with 
measurements.  

Introduction 
Phase diagrams typically map the equilibrium phase as a function of temperature, 
composition, and pressure or another set of equivalent thermodynamic variables. In this 
paper we emphasize that applied magnetic field should be added to the list of 
thermodynamic variables, and we give an example where application of a magnetic field 
leads to a new temperature composition path. Previous work on the application of high 
fields to Ni-Fe is reviewed by Kakeshita (1). Also, small fields have been used to anneal 
soft magnetic materials to produce subtle modifications of the local atomic environment 
that can increase the permeability (2). It is easy to understand why the effect of magnetic 
fields on phase formation has been little studied. Laboratory fields are typically less than 
one Tesla and cannot significantly affect the free energy. A simple perturbative estimate 
of the energy change due to the interaction of the atomic moments with the field, •m B , 
indicates that a one Tesla field changes the free energy per atom in Fe by about the same 
amount as changing the temperature by 1 degree. By the same token, applying the highest 
available fields, 30-40 Tesla is expected to have impacts similar to temperature changes 
of 30-40 Kelvin; in fact, there is evidence that this underestimates the effects by as much 
as a factor of two. 

There are several ways that magnetic fields can influence microstructure. Most directly, it 
can change the relative stability of phases at zero temperature.  Consider a two phase 
mixture with different saturation magnetizations. The magnetic induction, B, will favor 
the high magnetization phase by an amount ( )high low− •m m B , where m is the atomic 
moment. At finite temperatures there can be additional mechanisms; thermally occupied 
extended excitations such as spin waves and phonons, and localized excitations such as 
vacancy facilitated diffusion will be affected. Nucleation will be impacted by field related 
modification of nucleation barriers and surface energies. Martensite starting temperatures 
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will be raised. The presence of strong fields will reduce magnetic fluctuations and, hence, 
magnetic entropy. In ferromagnets the Curie temperature (appropriately defined) will be 
increased.  

Fe alloys are a natural place to look for field induced modifications of phase equilibrium 
because Fe atoms have large local moments that have strong exchange interactions with 
their neighbors. Local Fe moments survive to high temperatures and to large percentages 
of alloy additions (3,4). Furthermore, the directional ordering of Fe moments can vary 
from ferromagnetic to antiferromagnetic depending on the atomic volume (5). We chose 
to look at Fe-Ni alloys at compositions in the two phase region between the bcc and fcc 
solid solutions (α andγ  phases). The temperature was chosen to be 500º C, a temperature 
at which diffusion is expected to be high enough to allow equilibrium to be approached 
within a few hours. The selected composition was Fe85Ni15 which lies on the “T0” line 
along which the free energies of α andγ  phases are equal (6). This is also near the 
Martensite start temperature (7). Placing the alloy at this balance point maximizes the 
local driving force toward phase separation (see Fig. 1). The transformation can proceed 
either martensitically i.e. without diffusion, by diffusive decomposition or by a 
combination. This choice was made to insure that no unforeseen impact of B on diffusion 
obscured the field’s effect on phase stability. The sample should phase separate even 
without diffusion into bcc and fcc solid solutions. As time passes phase fractions will 
proceed toward the value prescribed by the lever rule applied to the phase diagram (8) as 
shown in Fig. 1. We anticipated that application of a large magnetic field would tip the 
balance in favor of the ferromagnetic bcc phase at the expense of the paramagnetic fcc 
phase.  

Procedure 
An alloy of atomic composition Fe0.85Ni0.15 prepared from Ni and Fe stock of 0.999 
purity was arc melted in vacuum 5 times and then drop cast into a 10 mm diameter 
chilled Cu mold in vacuum. The alloy was then homogenized in vacuum for 100 hours at 
1100° C. A small amount was ground into powder; the remainder was cut into 10 mm 
long segments.  The powder was made by diamond wheel grinding and was encapsulated 
in 10 mm diameter stainless steel tubes that were crimped and sealed by electron 
discharge machining. The crimped tubes were 10 mm long. All powder capsules and 
cylinders were annealed together at 700° C for 2 hours to obtain the equilibriumγ  phase 
and then were quenched in ice salt brine. The bulk cylinders were electro-polished. A 10 
mm rod and a powder sample were subjected to a 29 T field for 245 minutes at 502° C. 
As a control, one of the identically prepared rods and powder samples was annealed for 
245 minutes at 502° C in the ambient field. The samples were rapidly heated from room 
temperature to 502° C. They were air cooled at a rate of approximately 100° C/min. The 
field annealed sample remained in the field until it had cooled to a temperature of 85° C 
at which time the field was turned off. 

Results 
The volume fractions of the α  andγ  phases were determined using Cu Kα radiation from 
a Philips defractometer with a θ -compensating slit. Several diamond peaks resulting 
from diamond wheel grinding were seen. The diamond peaks are sufficiently separated 
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from the Fe-Ni peaks that they do not interfere with measurements of the integrated 
intensities of the Bragg peaks.  

In the kinematic approximation to diffraction and with the use of a compensating slit, the 
integrated intensity associated with a particular reflection hkl is related to the volume 
fraction Vi of phase i and the scattering angle 2θ  by (9): 
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Here E represents absorption effects not present in an infinitely thick powder in the 
kinematic limit, I0 is the beam intensity, hklm  is the reflection multiplicity, R is the 

distance to the detector, λ  is the wavelength (1.54
o
A ),Ω i is the atomic volume, and Fi is 

the average atomic scattering factor for the phase i. The scattering factor, Fi is equal to 

( ) ( ) ( )sin( ) sin( )1i Fe i Nic F c Fθ θ
λ λ+ −  where ci is the Fe concentration of phase i and Fj is the 

atomic scattering factor of element j. Because Fe and Ni have similar atomic numbers 
their scattering factors are similar and the average scattering factor at a given θ  varies by 
less that 10% for any concentration that can possibly occur in our samples. A further 
simplifying coincidence is that the scattering factor is independent of concentration near 
the first α  and γ  peaks, sin(θ )/λ =0.24. Therefore, when the ratio of the first two peak 
intensities is taken, many of the factors in Eqn. 1 cancel and some factors almost cancel. 
For example, the atomic volumes, scattering amplitudes, and sin(θ )/λ   are almost equal. 
Performing these nearly exact cancellations, an extremely simple expression relating 
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This simple relation gives the volume fraction FB=0=Vγ B=0/V B=0total=R B=0/(1+RB=0) to 
within one percent of the full expression, Eqn. (1.1). 

The integrated intensities under each peak divided by the multiplicity are given in Table 1 
along with the value of sin(θ )/λ and the atomic scattering factors. The integrated 
intensities are in arbitrary units and have been normalized to give P110/m110=1.0 for both 
samples. 
Table 1. Peak intensities divided by peak multiplicity for the α  peaks for anneal with 
(B=29 T) and without field (B=0 T). 

α     hkl 110 200 211 

P/m B=0 1.000 .468 .256 

P/m B=29 1.000 .419 .268 

F2 313. 267. 178. 

sin( ) /θ λ  .25 .35 .43 
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Table 2. Same as Table 1, but for γ  peaks. 
γ    hkl 111 200 220 311 222 

P/m B=0 .383 .302 .111 .075 .066 

P/m B=29 .207 .135 .067 .041 .041 

F2 312. 254. 172. 133. 122. 

sin( ) /θ λ  .24 .28 .39 .43 .46 

The simplicity of Eqn. 1.2 allows us to read RB=0 from the data for the 110 and 111 peaks; 
we find RB=0=.383 and FB=0=0.28. The value 0.28 is smaller than the equilibrium values of 
0.355±0.03 from application of the lever rule to the phase diagram (8). To put this 
discrepancy into perspective, consider that an uncertainty in our anneal temperature of 
10º C results in an additional uncertainty in the expected volume fraction of ±0.01; an 
uncertainty of 1 percent in our alloy composition results in an additional uncertainty in 
the expected volume fraction of ±0.03. Our uncertainty in temperature and composition 
should be smaller than 10º C and 1 percent, so our low observedγ  volume fraction needs 
explanation. The difference between our value and the measured equilibrium phase 
diagram could reflect either that our system has not reached equilibrium or that the value 
of E in Eqn. 1.1 is not the same for the two phases. By using data from all peaks we can 
approximately account for the combined effects of thermal diffuse scattering, surface 
roughness, finite sample thickness, preferred orientation, and deviations from the 
kinematic approximation (extinction). Such an analysis gives an average value of 
FB=0=0.30±0.03 that is consistent with the value 0.28 obtained from the simple formula 
(1.1) and compares reasonably to the previously measured value of 0.355±0.03 from the 
data of Fig. 1 (8). 

This result gives a baseline from which to measure the effect of the magnetic anneal. If 
we know the relative reduction, S=RB=0 /RB=29, in R induced by the field we can 
determine the resulting phase fraction,  
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The value of S can be deduced from another set of intensity ratios: 
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provided we have an independent determination of the atomic scattering factor ratios and 
E ratios. For the concentration range we are working with, it can be safely assumed that 
the scattering factor ratios cancel. We find solid evidence that E is independent of the 
field. Therefore the ratios involving E reduce to 1 leaving a very simple expression for S.  
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Table 3 gives S as determined from different hkl/h’k’l’ pairs. Averaging all the data, we 
obtain 1.8±0.2. The variability of S with respect to peak pairs is independent of the 
atomic scattering amplitude ratio but could reflect changes in E due to the field. 
However, the most likely source of error is the background subtraction which was done 
by visual interpolation of the intensity between Bragg peaks. The 222 peak has the fewest 
counts and is therefore most sensitive to the determination of the background level; this 
may account for its uniformly lower value of S. 

Table 3. S calculated from ratios of peak areas for different peak pairs, (area bcc)/(area 
fcc).  

α \γ  111 200 220 311 222 

100 1.85 2.24 1.67 1.80 1.59 

200 1.65 2.00 1.49 1.60 1.42 

211 1.94 2.35 1.75 1.88 1.66 

Now that S has been determined we can use Eqn. 1.4, by inserting the volume fraction for 
the sample annealed in ambient field, FB=0=0.30±0.03, to obtain the γ  phase fraction of 
the field annealed sample. We obtain FB=29=0.14±.03. This demonstrates that the field 
reduces the amount of γ  phase by a factor of two. The same relative reduction is 
obtained if the value of FB=0 from the measured phase diagram is used in Eqn. 1.1; the 
only difference being that the reduction is from 0.36 to 0.16. 

Modeling 
For a collinear ferromagnetic material an applied field shifts the Kohn-Sham potential of 
the majority electrons to lower energy. This shift results in a slight increase of the 
saturation magnetic moment. As the temperature is increased ferromagnetic materials 
become slightly non-collinear due thermal excitation of spin waves. Above the Curie 
temperature the directions of the local moments have no long range correlation and 
become increasingly random at higher temperatures. The locally self-consistent multiple 
scattering code (10) was used to calculate the change in energy due to the application of a 
30 Tesla field. The additional applied magnetic field contributes a shift in the local Kohn-
Sham potential along the direction of the magnetic moment and a rotation of the moment 
toward the direction of the applied field. 

The thermodynamic model of Cheng et al. (6) based on experimental data reproduces the 
phase diagrams in zero field. We calculate the change in the energy resulting from 
application of a magnetic field and add this contribution to the existing thermodynamic 
model. In this way, contributions, which we expect will not be greatly influenced by the 
magnetic field, such as phonon energy and entropy, can be taken from the existing model.  
Because we are interested in a temperature well away from the critical temperature we 
can approximate the change in the partition function by summing over a small number of 
spin configurations. This procedure fails as the temperature approaches the Curie 
temperature. Fig. 2 shows the calculated modified free energy curves for Fe-Ni at 500ºC. 
Theα  phase is found to have increased stability due to the field of 30 Tesla. The 
concentration at which the α  and γ  curves cross is shifted to higher Ni concentration 
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indicating an increase in the martensite starting temperature. The field induced change in 
volume fraction of α  and γ  is in qualitative agreement with our measurements. 

Conclusion 
Because S can be related so directly to the integrated intensities utilizing a small number 
of well justified approximations we are confident of the validity of this relative measure 
of the impact of the magnetic field on the phase ratio. The evaluation of the individual 
phase fractions requires additional assumptions regarding E. We are encouraged by the 
reasonable agreement of our B=0 result with the previously measured phase diagram but 
have no way of determining whether the small discrepancy results from insufficient 
equilibration time or dependence of E on phase. Planned metallography on the bulk 
cylinders may shed additional light on the initial and final phase fractions. 
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Figure 1. Fe rich section of phase diagram showing martensite start-temperature, equal 
free energy line, and decomposition path at 500º C (8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Free energy with and without applied field. Arrows indicate the phase 
concentrations. 

 


