
 
 
 
 
 

A NEW APPROACH FOR EVALUATING RADIATION EMBRITTLEMENT  
OF REACTOR PRESSURE VESSEL STEELS 

 
 

J. A. Wang and N. S. V. Rao
Oak Ridge National Laboratory 

Oak Ridge, TN 37831-6171 
wangja@ornl.gov, raons@ornl.gov 

 
 

ABSTRACT 

 A new approach is developed to predict the radiation 
embrittlement of reactor pressure vessel steels. The Charpy 
transition temperature shift data contained in the Power Reactor 
Embrittlement Database is used in this study. The results 
indicate that this new embrittlement predictor achieved about 
67.3% and 52.4% reductions respectively, in the uncertainties for 
General Electric (GE) Boiling Water Reactor plate and weld data 
compared to Regulatory Guide 1.99, Rev. 2 (RG1.99/R2). The 
implications of irradiation temperature effects for the 
development of radiation embrittlement models are then 
discussed. A new approach for the Charpy trend curve is also 
developed, which incorporates the chemical compositions into 
the governing fitting equation. This approach reduces the 
uncertainty of Charpy data fitting and provides an expedient 
scheme to link and project the surveillance test results to those 
for reactor pressure vessel steels. 
 
Keywords⎯radiation embrittlement, reactor vessel integrity, 
information fusion, power reactor, boiling water reactor, material 
modeling, Charpy curve fitting 
 
 
INTRODUCTION 
 
 The aging and degradation of light-water reactor pressure 
vessels (RPVs) are of particular concern because the magnitude 
of the radiation embrittlement is extremely important to the 
plant’s safety and operating cost. Property changes in materials 
due to neutron-induced displacement damage are a function of 
neutron flux, neutron energy, and temperature ⎯ as well as the 
pre-irradiation material history, material chemical composition, 
and microstructure ⎯ since each of these influence radiation-
induced microstructural evolution. These factors must be 
considered to reliably predict RPV embrittlement and to ensure 
the structural integrity of the RPV. Based on the embrittlement 
predictions, decisions must be made concerning operating 
parameters, low-leakage-fuel management, possible life 
extension, and the potential role of pressure vessel annealing. 
Therefore, the development of embrittlement prediction models 
for nuclear power plants (NPPs) is a very important issue for the 
nuclear industry regarding the safety and lifetime extension of 
aging commercial nuclear power plants.  

The general degradation mechanisms of material aging 
behavior can be quite complicated. They include microstructure 
and compositional changes, time-dependent deformation and 
resultant damage accumulation, environmental attack and the 
accelerating effects of elevated temperature, and synergistic 
effects of all the above. These complex nonlinear dependencies 
make the modeling of aging material behaviors a difficult task. 
There have been several domain (mechanism) models that 
capture various aspects of material behavior; these models are 
designed by the domain experts to capture various critical 
relationships. At the same time, conventional nonlinear 
estimators ⎯ while requiring very limited domain expertise ⎯ 
can model relationships that are not readily apparent. 
Consequently, there has been a profusion of methods with 
complementary performance, and no single method has proved 
to be always better than all others. Our goal is to develop an 
effective methodology by combining the domain models with the 
nonlinear estimators, including neural networks and NNRs 
(NNR) to exploit their complementary strengths.  

We have previously developed a large Power Reactor 
Embrittlement Database (PR-EDB) [1] for U.S. nuclear power 
plants.  Subsequently, in cooperation with the Electric Power 
Research Institute, additional verification and quality assurance 
of the data was performed by the U. S. reactor vendors. PR-EDB 
is used in this study to predict the embrittlement levels in light-
water RPVs. The results from a newly developed near neighbor 
projective fuser indicate that our combined predictor achieved 
about 67.3% and 52.4% reductions, respectively, in the 
embrittlement uncertainties for the GE Boiling Water Reactor 
plate and weld data compared to RG1.99/R2. 
 A new methodology that incorporates the chemical 
compositions into the Charpy trend curve was also developed. 
The purpose of this new fitting procedure is to generate a new 
multi-space topography that can properly reflect the 
inhomogeneneity of the surveillance materials and utilize this 
multi-space trend surface to link and project the surveillance test 
results to that those for RPV steels.  
  
The Trend Curve Development for Charpy Impact Data  
 

Ferritic RPV materials undergo a transition in fracture 
behavior from brittle to ductile as the test temperature of the 
material is increased. Charpy V-notch impact tests are 
conducted in the nuclear industry to monitor changes in the 
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fracture behavior during power reactor service. Neutron 
irradiation to a certain threshold causes an upward shift in the 
ductile-to-brittle transition (DBTT) and a drop in the upper shelf 
energy. The nuclear industry indexes the DBTT at 30 ft-lbs (41J) 
of absorbed energy, and the shift in the DBTT is referred as 
∆RTNDT or ∆T30. This transition temperature shift data is also 
used as the primary index of RPV embrittlement for this study. 

In general, in order to obtain the ∆RTNDT or ∆T30, the raw 
Charpy impact test data, including unirradiated and irradiated 
data sets, need to be fit through a data fitting procedure to 
develop appropriate trend curves. The current practice of Charpy 
curve-fitting procedures used in PR-EDB is based on the 
hyperbolic tangent model [2], which has been proven to be 
successful for the determination of transition temperature for 
materials that have more or less homogeneous properties.  The 
impact energy and testing temperature are used as the two 
primary input parameters for the determination of the fitting 
curve.  The hyperbolic tangent model relates impact energy E to 
the test temperature T according to Equation 1: 

(5)

with USE and LSE as the upper- and lower-shelf energy, 
respectively, with TM as the midpoint of the transition 
temperature region, and SLOPE as the slope of the curve at TM.  
This model is purely phenomenological but characterizes the 
general shape of a Charpy curve well in terms of the four basic 
parameters, USE, LSE, TM, and SLOPE.  The hyperbolic tangent 
function is the most widely used fitting procedure next to hand 
(eyeball) fitting.   

For a particular raw Charpy data set provided with 
chemistry information for each individual specimen, if certain 
data exhibit a large degree of scatter about the best-fit line, 
detailed study from PR-EDB [1] shows that these data generally 
either have a much higher or lower Cu content than the rest of 
the specimens. This was illustrated in Fig. 1 with weld data from 
capsule T of Zion Unit 2, where the Charpy data with the lowest 
Cu content at 0.12 wt% have the highest impact energy, 119 
Joule. This may imply that when the greater inhomogeneity of 
specific test sets is known, further constraints need to be added 
into the Charpy curve-fitting model, such as Cu and Ni contents, 
to reduce the uncertainty and to reflect the inhomogeneity or 
chemical variability of the tested surveillance materials. 
Furthermore, the surrogate materials, especially for many weld 

materials of the RPV beltline, were used in the U.S. power 
reactor RPV surveillance program. Thus, developing a proper 
procedure to cope with the chemistry variability may directly 
provide a bridge and proper safety margin in linking the radiation 
embrittlement of the surveillance test samples to that of the RPV 
beltline materials. 

 
Proposed New Fitting Function with Consideration of the 
Chemistry Variability  
 

In order to consider the chemical variability of the 
surveillance test samples, a new fitting procedure that 
incorporates the chemical composition into the governing 
equation was developed. The formula for the impact energy as a 
function of test temperature (T), and Cu and Ni (plus other 
chemistry, such as P, Mn, etc.) can be written as: 
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where A=(USE+LSE)/2, B=(USE-LSE)/2, C=1/SLOPE, and Ci 
are constant fitting parameters. This approach assumes that 
there is no major change of the general trend between the new 
fitting equation and the conventional fitting curve without the 
consideration of chemical variability. 

This new fitting procedure provides a new multi-dimension 
topography that can properly reflect the inhomogeneneity of the 
surveillance materials. 
 
Advanced Charpy Data Fitting Function  
 

A physical shape of the hyperbolic tangent fit function for 
a Charpy test set is dictated by the USE, LSE, and midpoint 
temperature at the transition region, TM, and the slope at the TM 
as described in Equation 1. The new fitting approach as 
presented in Equation 2 can only scale the impact energy up or 
down without significantly changing the overall shape of the 
trend curve, such as the slope and temperature range at the 
middle point of the transition region. In order to have more 
freedom in adjusting the hyperbolic tangent fit curve, a more 
sophisticated formulation of the proposed new fitting procedure 
that takes into account the shape change of the hyperbolic 
tangent fit curve was developed and is illustrated in Equation 4:  
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where, fi , i =1,4, are functions of chemical compositions for Cu 
and Ni contents, which are written as follows, 

f C Cu f C Cu f C Cu Ni C

f C C C Cu Ni C
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where Ci, i=5, 11 are constant-fitting parameters.  
 
The function f1 to f4 was introduced in the advanced 

data fitting function as described in Equation 4, where the f1 is 
used to adjust temperature range at the middle point, f2 is used 

FIG. 1⎯Chemical variability of Charpy data. 
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to adjust the slope at the middle point, f3 is used to scale the 
impact energy curve up or down, and f4 is used to adjust the 
fitting bias.  

However, the authors would like to mention that to use the 
proposed formula, the user needs to have enough data to avoid 
overfitting phenomena. If there are not sufficient data, the user 
needs to consider reducing the number of the suggested fitting 
parameters.   
 
Results of the Proposed Fitting Procedures 
 

The weld Charpy data, with HEAT_ID = WDR301 listed in 
PR-EDB, from surveillance capsule 18 of Dresden Unit 3 nuclear 
power plant were used for this feasibility study. The mean 
chemistry of the Charpy set for Cu and Ni contents is 0.2077 and 
0.353 wt% respectively. 

 

M

 
Conventional Hyperbolic Tangent Fit Result ─ Equation 1 

was used in the curve fitting, where IMSL routine ZXSSQ was 
used in the nonlinear least squares fitting evaluation to 
determine the constant fitting parameters. Based on Equation 1, 
the estimated one standard deviation is 13.84°C for the selected 
WDR301 surveillance data set. The estimated constant-fitting 
parameters are A=50.85 J, B= 47.85 J, TM=15°C, and SLOPE = 
0.0179. The corresponding hyperbolic tangent fitting curve and 
data are shown in Fig. 1a. M

E 
T 

M

E 
T 

New Fitting Function Test Results ⎯ A FORTRAN 
program was written for this feasibility study, where IMSL routine 
ZXSSQ was used in the non-linear least squares fitting. Based 
on Equation 2, the estimated one standard deviation is 12.09°C. 
The estimated constant-parameters are listed below. 
A= 50.85 J, B=47.85 J, TM=8.0°C, and SLOPE = 0.0379, C5 
=15.09, C6=2.869, and C7=-18.5. 
 
 
 
 
 
 
 
 
 
 

 

Advanced Testing Function Fit Results ⎯ Based on 
Equation 4, the estimated one standard deviation is 10.05°C. 
The estimated constant-parameters are listed below. 
A=50.3 J, B=47.3 J, T0=5.87°C, and SLOPE = 0.00805, C5 
=1032, C6=-123, C7=-277.4, C8=1.566, C9=1.987, C10=-25.47, 
and C11=2.891. Because only eight data points were available in 
this modeling fitting development, no training and testing set data 
were assigned. The examination of the overfitting phenomena 
was done by evaluating the 3-D plots to see any anomaly or self-
inconsistency, as shown in Figs 4 and 5. It appears from the 
plots that the generated topology is still very closely followed the 
hyperbolic tangent characteristic of the Charpy impact test data. 
No obvious overfitting can be identified, this may be partially due 
to the hyperbolic tangent constraint assigned in the Equation 4. 
 
 
 
 
 
 
 
 
 

f  
 
 
 
 
 
Applying New Fitting Procedure for Surrogate Material 
Research 
 
 Based on the proposed new fitting procedure, a multi-
dimension topography can be generated. For simplification, the 
3-D Cartesian coordinate is used to illustrate the developed 
multi-dimension topography (see Fig. 6), where test temperature 
and impact energy stand for the x and z coordinates, 
respectively, and the third axis represents the integrated 
formulation of the chemistry composition functions, fi. 
 

Evaluation of the Trend Curve for the Target Chemistry 
Data ⎯ Based on constructed multi-space topography, as 
illustrated in Fig. 6, one can substitute the target chemistry into a 
new Charpy fitting equation and develop a new trend curve for 

FIG. 4⎯3-D plot of Eq. 3, with 
Ni fixed at average, 0.353 wt %. 

FIG. 5⎯3-D plot of Eq. 3 with 
Cu fixed at average, 0.2077 wt 
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the target materials. Therefore, this new procedure provides an 
expedient way to determine the trend curve for the surrogate 
materials of the RPV surveillance program. Furthermore, based 
on this new approach, the new advanced fitting procedure 
achieves a reduction in uncertainty by 27%, compared to that of 
the conventional hyperbolic tangent fit procedure. However, 
caution should be exercised while using these fitting functions, 
because of high-order nonlinearity, and the chemistry of the 
target materials should be within one standard deviation of the 
mean chemistry from which the new fitting equation was 
developed.  
 
 
New Approach for Evaluating Radiation Embrittlement  
 
Background 
 

The complex nonlinear dependencies observed in typical 
material aging data, as well as the existence of large 
uncertainties and data scatter, make nonlinear material behavior 
prediction a difficult task. The conventional statistical and 
deterministic approaches have proven to result in large 
uncertainties, in part because they do not fully exploit the domain 
specific knowledge. The domain models built by researchers in 
the field, on the other hand, cannot fully exploit the statistical and 
information content of the data. As evidenced in previous 
studies, it is unlikely that a single method, whether it is statistical, 
nonlinear, or domain model, will outperform all others. 
Considering the complexity of the problem, it is more likely that 
certain methods will perform best under certain conditions. In this 
paper, we propose to combine a number of methods such as 
domain models, neural networks, and NNRs. Such a 
combination of methods became possible because of recent 
developments in measurement-based optimal fusers [3-5] in the 
area of information fusion. 

The problem of estimating nonlinear relationships from 
noisy data has been well studied in the area of statistical 
estimation [6]. The nonlinear statistical estimators such as the 
Nadaraya-Watson estimator and regressograms [7] essentially 
rely on the properties of regressions. While neural networks and 
statistical estimators are general, the domain models developed 
by the material scientists specifically capture the critical 
relationships in the data that are not easily amenable to general 
methods. Such models are typically based on a combination of 
linear and nonlinear models, which are carefully chosen through 
an understanding of experimental data. 
 
Information Fusion Approach 
  

Particularly among the models developed for 
embrittlement data, there is unlikely to be a single winner, and 
different models perform well under different conditions. By 
discarding one or more models, one stands the risk of not 
characterizing certain critical performance. We propose to 
combine various methods using the isolation fusers discussed in 
[6]. The most important part of these fusers is that the combined 
system can be guaranteed to be at least as good, according to a 
chosen criterion such as prediction error, as the best individual 
estimator with a specified probability. Informally, the isolation 
property ensures that the fuser is at least capable of simply 
imitating any of the sensors, but in general can perform much 
better. This result is distribution-free in that no assumptions are 

made on the underlying error distributions; as a result, the 
guarantee is with a probability that approaches 1 as data size 
approaches infinity. Furthermore, for finite data sets, this 
probability can be computed based on the sample size; or, given 
the probability the required sample size can be computed. In 
practice, however, the sample size estimates are typically larger 
than the minimum required for a specific application at hand. 
This is to be expected since the sample size estimates are 
distribution-free and are valid for a broad class of applications. 
Furthermore, fusion of no proper subset of the models performs 
better than the fused system based on all models. Thus, the 
positive aspects of all individual estimators can be exploited 
without discarding any single estimator. The deployment of these 
fusers on various models will ensure (probabilistically) that the 
fused model is at least as good as the best of the individual 
models, irrespective of their individual performances. However, 
because of the general nature of the results on fusers, the actual 
performance gains in a particular application are often better 
than the guarantees. For example, the required sample size 
could be much smaller (but never larger) than the predicted 
sample size. We show here that significant performance 
improvements are indeed obtained by employing fusers to 
combine various embrittlement models. 
 
Methodology Used for Developing Embrittlement Models 
 

We employ neural networks, NNRs, and domain models, 
based on the PR-EDB data, to predict the Charpy transition 
temperature shift (∆T30) of RPV materials. From past experience 
[8], the boiling water reactor  (BWR) data has larger uncertainty 
than the other power reactor data. In this study, we focused only 
on the BWR data. 

The first task is to create unbiased training and test sets. 
The GE BWR surveillance data (listed in PR-EDB) were 
preprocessed and streamlined, and the one-to-one data 
relationship was constructed. The GE BWR data values were 
then scaled to the interval [-1, 1] using a linear max/min 
transformation. This ensures that no one component in the data 
dominates the parameter optimization scheme. Then the data 
were randomly partitioned into training and testing sets. The GE 
BWR data (112 samples) were used in the study: they included 
64 surveillance base data where 54 data were used as a training 
set and 10 data were used as a testing set, and 48 surveillance 
weld data where 40 data were used as a training set and 8 data 
were used as a testing set. The sensitivity of the sample size 
was not investigated in the current study. 

The second task consists of determining a number of 
estimators for this problem. For each method, a criteria function 
and optimization routine will be selected that consistently 
produces stable results. For statistical estimators, we will follow 
the procedure described in the literature. For artificial neural 
networks (ANN), one hidden layer and eleven hidden nodes 
were chosen with 2000 epoch iteration. A random generator was 
used to generate the initial weights for ANN modeling. Four sets 
of ANN models were tested. We then combined the statistical 
and deterministic estimators using information fusion techniques.  

An optimal projective fuser [4] proposed earlier was based 
on the lower envelope of error regressions of the estimators. In 
most practical cases, however, the error regressions are not 
available and only a finite sample is given. Consequently, this 
fuser is hard to implement and furthermore provides only 
asymptotic consistency. In this paper, we propose a projective 
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fuser based on the nearest neighbor concept [9], which is easy 
to implement. The combined system is guaranteed to perform at 
least as well as the best of the constituents by exploiting the 
regions where the individual methods are superior. 

A novel methodology is developed here for inferring 
nonlinear relationships that are typical in material behavior 
prediction. A tool based on this methodology is also implemented 
for the embrittlement prediction of NPPs. This tool could be 
expanded and adapted for use in other areas in which nonlinear 
material properties are important, such as failure analysis of an 
earthquake event, airplane safety analyses, and others.  
 
Embrittlement Prediction Models 
 

In this section we briefly describe various models used for 
embrittlement prediction, which will be combined in the next 
section.  

Oak Ridge National Laboratory (ORNL) Embrittlement 
Prediction Models ― The residual defects in materials due to 
neutron induced-displacement damage are a function of neutron 
energy, neutron flux, exposure temperature, and the material 
properties that determine how neutrons interact with atoms and 
how defects interact within the material [10]. Thus, temperature, 
neutron flux, neutron energy spectrum, and material composition 
and processing history all contribute to the radiation 
embrittlement process [11]. Insufficient consideration of these 
factors may result in misleading correlations and, thus, incorrect 
predictions of material state and material behavior, as well as 
incorrect end-of-life determinations. 

The development of new embrittlement prediction 
equations [8,12] stems from a series of studies on radiation 
embrittlement models, such as Guthrie's model [13], Odette's 
model [14], Fisher's model [15], B&W Lowe's model [16], the 
French FIM model [17], and several other parameter studies on 
the PR-EDB. Although the copper-precipitation model has been 
extremely successful in explaining many aspects of irradiation 
embrittlement, it is becoming increasingly evident that other 
elements also contribute to the embrittlement of RPV steel, such 
as Ni, P, Mn, Mo, and S. Theoretically, all the impurities in low- 
alloy steel are candidates to be included in the modeling. For 
example, C, Si, Mn, Mo, S, etc., were investigated in the test run, 
but including or excluding these elements did not affect the 
overall outcome of the statistical parameters significantly; 
therefore, these parameters (or elements) were not incorporated 
into final governing equations. Thus, Cu, Ni, and P were 
tentatively selected as key elements and were incorporated into 
the formula of the new prediction equations. Furthermore, the 
reason for separating weld and base metals is because the 
welds tend to show enhanced degradation, the welding process 
presents a possible region of physical and metallurgical 
discontinuity, and it offers added chances for the introduction of 
defects and undesirable components or stresses. 

A nonlinear-least-squares fitting Fortran program was 
written for this study. The development of the parameters for this 
new embrittlement model is based on statistical formulation 
chosen by computer iterations. To some extent, the physical 
mechanisms are embedded in the equations, such as the 
formulation of the fluence factor. Two new prediction models for 
the GE BWR data were developed, where the fluence rate effect 
was considered in the second prediction model and are 
described below. 
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ff

CuPNiCuCuWeldT

ff

CuPNiCuCuBaseT

ln01475.02478.0
*]/94.256.1349.420[)(

)6(ln001003.03216.0
*]/4983.2479.4118.94[)(

−

−+=∆

−

+++−=∆

Model 2 

⎥
⎦

⎤
⎢
⎣

⎡
∗−−∗

∗−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
∗+−

=∆

⎥
⎦

⎤
⎢
⎣

⎡

∗−−∗
∗−−−

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

∗−−+
=∆

)600000/ln()ln4554.063.11(
)54.45193.4(

23.2

ln02866.06523.0
)/55.4306.861580(

075.1)(

)7(
)600000/ln()ln7045.0344.8(

)/57.9722.1713.4944.18(

ln1285.04354.0
)/4.15175.581.31862.13(

)(

i

i

tff
CuNi

ff

CuPNiCuCu
WeldT

tff
CuPCuCuNi

ff

CuPCuNiCu
BaseT

where ∆T is the transition temperature shift in °F; neutron 
fluence f is in units of 1019 n/cm² (E > 1 MeV); effective full power 
time, ti, is in hours, and Cu, Ni, P are in wt%.  The residuals, 
defined as “measured shift minus predicted shift,” for ORNL 
Model 2 are illustrated in Figs. 7 and 8 for base and weld, 
respectively. 
 

Regulatory Guide 1.99, Rev. 2 Model ― The transition 
temperature shift of the RG1.99/R2 model [18] was also used in 
this study for comparison. It is described as follows. 
  ∆RTNDT = (CF) f  ( 0.28 - 0.10 log f  )                               (8) 
where, ∆RTNDT is the transition temperature shift in °F, CF(°F) is 
the chemistry factor (given in the Table 1 and Table 2 of 
RG1.99/R2), which is a function of Cu and Ni content, and 
neutron fluence f is in units of 1019 n/cm² (E > 1 MeV). The 
residuals for the RG1.99/R2 model are illustrated in Figs. 9 and 
10 for base and weld, respectively. 
 

Eason’s Models — The developed embrittlement model 
by E. D. Eason et al. (Eason’s model) [19] was used in this 
study. The Eason’s trend curve of transition temperature shift 
was developed based on the power reactor data and is 
described in Equation 9. The residual of Eason’s model is 
illustrated in Figs. 11 and 12 for base and weld, respectively. 
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 FIG. 7⎯ORNL Model 2 base residuals. FIG. 11⎯Eason Model base residuals.
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 FIG. 12⎯Eason Model weld residuals.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANN Models — An ANN is a parameterized nonlinear 
mapping from an input space to an output space [20]. An ANN 
realizes mapping from an m-dimensional input space to an n-
dimensional output space and will have m nodes in its input layer 
and n nodes in its output layer. A multi-layer ANN (ML-ANN) is 

the most common architecture. This architecture has additional 
layers of nodes between the input and output layers. The 
information from each input-layer node is fanned out to nodes in 
the layer hidden between the input and output layers. The 
information entering a node in any hidden or output layer is the 
weighted sum of all information leaving the layer below it in the 
hierarchy. The node performs a nonlinear/sigmoidal 
transformation on the weighted information it receives and fans 
out the result to all nodes in the layer above it in the hierarchy 
(except for the output layer). The weighting factors (weights) are 
free parameters that must be adjusted to some chosen criteria 
function using some optimization algorithm. In this way, ANNs 
are able to capture many higher-order correlations that may exist 
in the data. The relationship between the higher-order 
correlations produces a nonlinear mapping. This is the reason 
ANNs may offer a more accurate prediction of material 
behaviors, embrittlement in this case. Methods like ANNs 
provide a better tool to extract nonlinear relationships from 
embrittlement data to aid in the development of reliable 
maintenance and safety strategies and regulations in the nuclear 
industry. 

FIG. 8⎯ORNL Model 2 weld residuals. 
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FIG. 9⎯R.G. 199/R2 base residuals. 
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The backpropagation algorithm is used to train the 
network with the data [20]. The training process determines the 
weights of ANNs to fit a suitable nonlinear map. The 
backpropagation’s flexibility in training an ANN is why it does a 
better job of modeling than linear regression, but this method has 
several weaknesses. The backpropagation algorithm is based on 
local descent and can get stuck in local minima; as a result, the 
predictive properties can be quite varied. Also, there are a 
number of tunable parameters such as starting weights and 
learning rates that have a significant effect on the weight 
computed by the backpropagation algorithm. Thus, when 
different ANN models are trained with the same backpropagation 
algorithm but with different starting weights and learning rates, 

FIG. 10⎯R.G. 199/R2 weld residuals. 
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the performance can be significantly different. These networks, 
however, can be fused to achieve the performance of the best 
ANN [4], creating a more robust architecture.  Six independent 
variables, namely Cu, Ni, P, fluence, irradiation temperature, and 
effective full power time were used in the ANN models. A 
program written in C language was used in this study.  
 

K-Nearest Neighbor Regression (K-NNR) Method — The 
NNR [6] is also chosen to generate an embrittlement model. The 
algorithm is described below. Let x1, x2, x3,…,xn be a sequence 
of n independent measurements with known classifications, and 
x be the measurement to be classified. Among x1, x2, x3,…,xn, let 
the measurement with the smallest distance from x be denoted 
as x’. Then the nearest-neighbor decision rule assigns the 
classification of x’ to that of x. As for K-NNR, it assigns to an 
unclassified sample point the class most heavily represented 
among its K nearest neighbors to x. In this study, we chose the 
first three nearest neighbors with properly weighted function to 
represent the unclassified sample. 
 

Six independent variables, namely Cu, Ni, P, fluence, 
irradiation temperature, and effective full power time were used 
in K-NNR models. A second test K-NNR model, excluding 
irradiation temperature from the fitting parameter, generated a 
trend curve nearly identical to that with irradiation temperature. A 
program written in C language was used in this study.  
 
Fusion of Embrittlement Models  
 

The development of this model consists of identifying the 
error profiles of various estimators and the physical parameters 
of the underlying problem and designing the fusers for combining 
the individual estimators. Two types of information fusers were 
used in fuser model development, namely, linear fuser and near 
neighbor projective fuser.  

Initially we combined the statistical and deterministic 
estimators using the linear fuser, which is a special case of the 
isolation fusers [21]. The isolation fusers are shown to perform 
probabilistically as well as best estimator [5,21]. Given n 
estimators, f1(x),…, fn(x), the linear fuser is given by 
f(x)=w1f1(x)+…+wnfn(x), where w1…wn are the weights. We 
computed the weights for the fuser by minimizing the error of the 
fuser for the training set.  

 The projective fuser [9] based on the nearest neighbor 
concept was also implemented in the study. This fuser partitions 
the space of domain X into regions based on the nearest to the 
sample. For each region an estimator with the lowest empirical 
error is used to compute the function estimate for all points in the 
region. This fuser is easy to implement and provides finite-
sample performance bounds under fairly general smoothness or 
non-smoothness conditions on the individual estimator.  

The program was written in C where the solution is based 
on solving a quadratic programming problem. In this study, we 
utilized the linear fuser and near neighbor projective fuser to 
develop the embrittlement models; six parameters, namely Cu, 
Ni, P, fast fluence, irradiation time, and irradiation temperature, 
were incorporated into model development. Eight different 
models were investigated, including four neural network models, 
two ORNL models, the K-NNR method, and the Eason’s model. 

 
ORNL Fuser Model I — Linear Fuser was implemented 

into Fuser Model I development. The results of the linear fuser 

model indicate that this newly developed embrittlement model 
results in about 56.5% and 32.8% reductions in uncertainties for 
GE BWR base and weld data, respectively, compared with the 
model of RG1.99/R2. These are substantial improvements on 
the embrittlement predictions for the RPV steels. The plots of 
information model residual and its two-sigma uncertainties for 
base and weld materials are illustrated in Figs. 13  and 14, 
respectively. 
 

ORNL Fuser Model II — Fuser Model II is a simplified 
version of Fuser Model I, excluding the irradiation temperature 
from the fitting parameter and excluding Eason’s model from the 
fusion modeling. The data scatter of residuals for Fuser Model II 
are essentially the same as that of Fuser Model I. The results of 
ORNL Fuser Model II indicate that it has about 55.2% and 28.8% 
reduction in uncertainties for GE BWR base and weld data, 
respectively, compared with the RG1.99/R2 model. This 
indicates that Fuser Model I has marginally improved 
performance with Fuser Model II. Thus, the impact of irradiation 
temperature on embrittlement modeling for the GE BWR 
surveillance data can be considered as secondary.  

 
ORNL Fuser Model III — Nearest neighbor projective 

fuser was implemented in Fuser Model III development. The 
results of the projective fuser model indicate that it has about 
67.3% and 52.4% reductions in uncertainties for GE BWR base 
and weld data, respectively, compared with that of RG1.99/R2. 
These are significant improvements in the embrittlement 
predictions for RPV steels. The plots of the information model 
residual and its two-sigma uncertainties for base and weld 
materials are illustrated in Figs. 15 and 16, respectively. 
 
 
Discussion 
 

The comparison of the performance of the embrittlement 
models, based on the two-sigma uncertainty of residual values, 
is stated in Table 1. The weights for the linear fuser models for 
base and weld data are illustrated in Table 2. Fuser Model III 
gave the best performance among all the embrittlement 
prediction models. ORNL embrittlement models indicate that 
ORNL Model II is superior to ORNL Model I because it includes 
irradiation time to simulate fluence-rate effect. Thus, the 
implication of a flux effect in BWR environment was revealed in 
the model development. 

The authors would like to point out that the fusion 
modeling developed here is based on GE BWR data, including 
112 available sample data, whereas, RG1.99/R2 and Eason’s 
Model were developed based on both pressurized water reactor 
(PWR) and BWR surveillance data. Thus, the superior prediction 
by ORNL fusion models compared with RG1.99/R2 and Eason’s 
models may be partially due to the subset of power reactor data 
used in the model development. However, by the same token, 
this study may also demonstrate the superiority and advantage 
of using subset data, for example, the vendor specific data, to 
develop power reactor embrittlement models. In general a large 
data set with similar characteristics or controllable parameters 
will generate a better trend prediction compared to its subset.  
But a misleading trend curve can result from a large data set 
built upon different bases and uncontrollable parameters, 
revealed by its large uncertainty. 
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Table 1⎯Two-sigma uncertainty of the embrittlement mode
GE BWR data. 
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FIG. 13⎯Fuser Model I base residuals.
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FIG. 14⎯Fuser Model I weld residuals. 
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and specific operating procedures. There are significant 
problems associated with insufficient information, such as the 
detailed irradiation temperature of surveillance specimens, the 
thermal gradient within surveillance capsules, and the lack of 
data in particular regions of interest to characterize the vendor's 
service environments. About 64% of PR-EDB data is from 
Westinghouse; thus, the trend curve of all the four vendors’ data 
will closely resemble the Westinghouse reactor environment. 
Furthermore, B&W surveillance data appear to experience 
higher irradiation temperature (based on capsule melting wire) 
than other vendors. Combining low- and high-temperature data 
may bring further bias on top of bias from the modeling point. For 
example, from the trend curve of all the vendor data, the high- 
irradiation-temperature data shows negative bias (i.e. A 
prediction model shows over-prediction) and low irradiation 
temperature data show positive bias. However, the overall 
biases (or uncertainties) will cancel each other, resulting in a 
misleading statistical outcome, such as means and uncertainty.  

Eason’s model covers both PWR and BWR environments, 
where 96 BWR data were included in model development and 
coolant inlet temperatures were incorporated into governing 
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FIG. 16⎯Fuser Model III weld residuals. 
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equations to simulate temperature effect. In practice, the coolant 
inlet temperature is incorporated into the embrittlement model to 
simulate the irradiation temperature for a pressurized light-water 
reactor. However, a past study [11] showed that a large bias can 
still be identified in Eason’s model for surveillance data from a 
higher-irradiation-temperature environment; and the bias is 
similar to that of RG1.99/R2 [18]. This may indicate that the 
coolant inlet temperature is not equivalent to the irradiation 
temperature experienced by the surveillance specimens. 
Furthermore, based on this study on fuser models, neither 
including nor excluding coolant inlet temperature has a 
significant impact on the trend curve, a finding that may further 
support the above statement. 

For surveillance data, significant deviations of the 
measured shift from the trend curve (i.e., more or less than 34°F 
for plate materials) should be considered as a warning flag 
pointing to a possible anomalous capsule environment. The 
large uncertainties are the result of errors in the overall 
environment description. But, limited attention has been given to 
characterizing the irradiation temperature environment of the 
surveillance specimens. In general, the neutron environment, 
fluence and flux, can be determined fairly accurately; and 
possible effects from these sources are relatively small in a 
power reactor environment.  However, the temperature of 
surveillance capsule environments still relies heavily on the 
measurement of the melting wire. A more detailed analytical 
investigation of specimen temperature is needed, based on 
detailed neutronic and thermal-mechanical analysis for specific 
capsule and specimen loading configuration, to facilitate the RPV 
surveil

ace trend surface 
 link

PVs by combining 
omain models with neural networks and NNRs. Our method 
sulted in 67.3% and 52.4% reductions in 2-sigma uncertainties 

h the RG1.99/R2 model for base and weld 
aterials, respectively. This new approach combines the 

conve

ficient, reliable, and fast results, and can be an 
essenti

dgments 
 

 of the Irradiation Data for A302B and 
onitor Materials, NUREG/CR-6413, 

O

ultisensor Fusion, A.K. Hyder (editor), Kluwer Academic 
Publishers, 2001. 

] Rao, N.S.V., “On Fusers That Perform Better Than Best 
EE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 23, no. 8, pp. 904-909, 2001. 

[7]  PAC Learning Of 

rials: 18th International Symposium, 
ASTM STP 1325, March 1999. 

lance program in confidence. Thus, in the current trend 
curve development, the most likely reason for deviations from 
the trend curve is the specimen temperature.  
 To develop a global embrittlement model for U.S. power 
reactors, an independent investigation of each subgroup (each 
vendor) is recommended. When the investigations are 
completed, if substantial improvement is achieved for each 
subset based on the proposed methodology, then an information 
fusion technique will be utilized to integrate all the subset models 
into a global RPV embrittlement model.  
 
 
Conclusions 
 

A new approach that incorporates chemical compositions 
into the Charpy trend curve was developed. The purpose of this 
new fitting procedure is to generate a new multi-space 
topography that can properly reflect the inhomogeneneity of the 
surveillance materials and utilize this multi-sp
to  and project the surveillance test results to those for RPV 
steels. Furthermore, based on this new approach, the new 
advanced fitting procedure achieves a reduction in uncertainty by 
27%, compared with the conventional hyperbolic tangent fit 
procedure. 

We described an information fusion method for 
embrittlement prediction in light water R
d
re
compared wit
m

ntional nonlinear methods and model-based methods into 
an integrated methodology applicable for modeling material 
aging processes. This approach can potentially assist the 

nuclear industry on the issues of safety and lifetime extension of 
aging commercial nuclear power plants. By using a wide 
spectrum of methods, the proposed tool can potentially handle 
the subtle nonlinearities and imperfections and serve as a 
calibration and benchmark for the existing models.  The 
predictions generated by our system have the potential for 
providing ef

al part of the overall safety assessment of material aging 
research. 

Future improvements of the proposed method can be 
achieved using the k-fold cross validation method [6].  In this 
method data is partitioned into k blocks, of which k-1 of them are 
used as the training set and the remaining as the test set. This 
process is repeated for all k permutations of choosing the k-1 
blocks for the training set. Thus, at the end of this exercise, there 
are k accuracy estimates in terms of the average of test and 
training error. Using these k estimates we can compute the 
average accuracy, variance, and confidence interval. Based on 
the results, one can assign weights to various blocks in 
proportion to test error. These weights will then be used in 
developing an i-neighbor version of the proposed fuser. More 
generally, the cross validation method can also be used to 
compare various methods in a statistically informative manner. 
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