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Summary. We discuss single particle dynamics of the half-filled 2D Hubbard
model at T → 0 calculated within the dynamical cluster approximation, using NRG
as non-perturbative cluster solver, which requires the use parallel architectures with
large number of processors and memory. In addition, fast temporal storage for out-
of-core matrices is needed. The results obtained indicate that the half-filled 2D
Hubbard model at T → 0 is a paramagnetic insulator for all values of the Coulomb
interaction U in strong contrast to weak-coupling theories.

Introduction

The microscopic description of magnetism and metal-insulator transitions
constitutes one of the major research activities in modern solid state theory.
Especially transition metal compounds like V2O3, LaTiO3, NiS2−xSex and
the cuprates show metal-insulator transitions and magnetic order depending
on composition, pressure or other control parameters [1]. The paramagnetic
insulating phase observed in these materials is believed to be a so-called
Mott-Hubbard insulator due to electron-electron correlations; in contrast to
Slater or band insulators like SrTiO3.

The simplest model showing both magnetism and a correlation-induced
metal-insulator transition (MIT) is the one-band Hubbard model [2]

H = −
∑
i,j,σ

tijc
†
iσcjσ +

U

2

∑
iσ

niσniσ̄ . (1)

Considerable progress in understanding the physics of this simple but nev-
ertheless non-trivial model has been achieved in the last decade through the
development of the dynamical mean-field theory (DMFT) [3–5]. In partic-
ular, the phase diagram for the unfrustrated Hubbard model is very well
understood [4,5]. At half-filling the physics is dominated by an antiferromag-
netic insulating phase (AFI) for all U > 0 with a maximum TN ≈ 0.15W
around U ≈ W , where W is the bandwidth of the non-interacting system.
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For finite doping, the antiferromagnetic phase persists up to a critical doping
δc [6] and in addition shows phase separation [7, 8]. For very large values of
U the antiferromagnetic phase is replaced by a small region of Nagaoka type
ferromagnetism [9–11].

Beyond this mean-field description, the situation is less clear. Except for
spatial dimension D = 1, where it has been proven rigorously that the system
at half filling is a paramagnetic insulator for all U > 0 [12], the question to
what extent the paramagnetic Mott-Hubbard metal-insulator transition is a
generic effect has not been addressed satisfactorily.

Since phenomena like the Mott-Hubbard transition are intrinsically non-
perturbative in nature, we use the recently developed dynamical cluster ap-
proximation (DCA) [13–17] to study the low-energy behavior of the 2D Hub-
bard model at half filling in the weak to intermediate coupling regime. The
DCA systematically incorporates non-local corrections to local approxima-
tions like the dynamical mean field, by mapping the lattice onto a self-
consistently embedded cluster. We solve the cluster problem using for the
first time Wilson’s numerical renormalization group (NRG) technique [18].
With this technique we are able to produce non-perturbative results in the
thermodynamic limit at T → 0, which is necessary to unambiguously identify
the Mott-Hubbard transition in the dynamics [19].

The paper is organized as follows. The next section contains a brief in-
troduction to the DCA. The numerical results will be presented in the third
section followed by a discussion and summary.

Formalism

Theoretical background

A detailed discussion of the DCA formalism was already given in a previous
publication [20]. The main assumption underlying the DCA is that the single-
particle self-energy Σ(k, z) is a slowly varying function of the momentum k
and can be approximated by a constant within each of a set of cells centered
at a corresponding set of momenta K in the first Brillouin zone [13]. Within
this approximation, one can set up a self-consistency cycle similar to the one
in the dynamical mean-field theory (DMFT) [4, 5]. However, in contrast to
the DMFT, where only local correlations are taken into account, the DCA
includes non-local dynamical correlations. The length scales of these non-local
correlations can be varied systematically from short ranged to long ranged
by increasing the number of coarse-graining cells. The DCA collapses to the
DMFT if one represents the Brillouin zone by one cell only, thus setting the
characteristic length scale to zero.

For the impurity problem of the DMFT a large set of reliable numerical
techniques has been developed over the past ten years [4, 5, 21, 22]. In par-
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ticular, for T = 0 and low temperatures, the NRG has turned out to be the
method of choice [8, 19].

The NRG introduces a logarithmic discretization of the energy axis, which
allows a mapping of the cluster Hamiltonian to a set of semi-infinite chains
coupled to the cluster degrees of freedom at their left end. The important
aspect is that, within each chain, a coupling exists between nearst neighbors
only and decreases exponentially with increasing chain size (for details see
e.g. [18]). Thus, adding a new site to a chain with given length N will mix
only states in a restricted energy window. This observation is then used to
set up the follwing algorithm, which is visualised in Fig. 1:

(i) Diagonalize the system with chains with N sites
(ii) Keep only a handable number of eigenstates above the ground state
(iii) Using this restricted space, generate the Hamilton matrix for the system

with N + 1 sites
(iv) Continue with step 1. until desired accuracy has been reached

Finally, calculate the desired physical quantities and proceed with the DCA
self-consistency. As becomes apparent from the schematic view in Fig.1 this
procedure prevents the exponential increase of the dimension of the matrices
with increasing system size. The price one pays is the loss of information at
higher energies. However, this can be partially compensated by keeping the
information about physical quantities from chains with less sites [18].

Computational requirements

In principle the NRG algorithm does not suffer from an exponential in-
crease of the size of the matrices to diagonalize, and its application to the
DMFT [8, 19] requires only standard workstation resources. However, the
extension to complex problems like the DCA still increases the demand in
computational power drastically. While for a single impurity each chain site
increases the Hilbert space by a factor 4, this factor becomes 4Nc for a DCA
calculation with Nc cluster sites. Thus, for the time being, the code is limited
to a cluster size Nc = 2. To improve the performance and efficiency of the
code in particular for larger cluster sizes, it is currently extended to use the
distributed array implementations of ScaLAPACK and GlobalArray. With
this technique we believe that at least Nc = 4 will be accessible in the near
future.

For the results with Nc = 2 presented here, the typical memory consump-
tion was roughly 4GB and in addition to distributed parallelism using MPI a
hand-implemented SMP parallelism on the basis of POSIX threads was nec-
essary to obtain decent computation times [23]. This code leads to an almost
linear speed-up for up to 8 SMP processors in the application discussed here
(see Fig. 2). The code was run on the Hitach SR8000 and the IBM Regatta
at the computer center of the Max-Planck society at Garching. For the di-
agonalization the LAPACK routine DSYEV was used, while the standard
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Fig. 1. Schematic view of the NRG algorithm. The blue lines marked (ii) represent
the truncation step. In the construction of HN+1, levels above these lines (drawn
in red) will be omitted and the size of the Hamilton matrix to diagonalize is always
4 × 4.

linear algebra operations were done with BLAS routines. The resulting per-
formance was on the order of 0.8Gflop/s for the Hitachi and 3 . . . 3.5Gflop/s
for the Regatta and a typical production run (i.e. one NRG run as part of
about 10 DCA iterations) consumed roughly 24h total CPU time.

In addition to the in-core matrices, a matrix class with out-of-core struc-
ture was developed to prevent an inflation of allocated memory from the
structures holding informations about physical quantities. This technique re-
quires additional fast local I/O and temporary space on the order of 10–50
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Fig. 2. Total user time and speed-up of the NRG code with POSIX threading as
function of number of SMP processors. The user time is scaled with its value for
one processor (≈ 12h on the IBM Regatta at the RZ Garching).

GB. For such an application both the Hitachi and the Regatta provide an
excellent environment.

Since the NRG is applied to such a complex problem for the first time
here, Quantum Monte-Carlo (QMC) calculations for large clusters and fi-
nite temperatures (see e.g. [20] for performance details) were performed in
addition to validate the NRG results.

Only due to this perfomance on modern massively parallel computer sys-
tems the application of the DCA with QMC or NRG to physical problems is
possible at all.

Results

In the following we will discuss our NRG results for a DCA calculation with
Nc = 2. While this cluster size seems, at first sight, too small to draw any
reliable conclusions, recent publications [24–26] support that it already con-
tains all essential ingredients to properly describe at least the qualitative
effects of nonlocal correlations. In addition, the results presented here are
the first calculations at T = 0 for an embedded cluster theory based on a
non-perturbative technique.

The simplest realization of the Hubbard model (1) in D = 2 is a square
lattice with nearest-neighbor hopping. In this case, the dispersion has the
form

εk = −2t (cos(kx) + cos(ky)) . (2)

In the following, we use t = 1 as our energy scale, i.e. the bandwidht of the
dispersion (2) is W = 8. The proper tiling of the first Brillouin zone is shown
in Fig. 3. The two K vectors are located at K0 = (0, 0) and Kπ = (π, π) with
corresponding cells labeled M0 and Mπ, respectively. The “coarse graining”
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Fig. 3. Tiling of the first Brillouin zone for Nc = 2. M0 and Mπ label the sets of
k vectors belonging to K0 = (0, 0) and Kπ = (π, π), respectively.

necessary to define the effective cluster propagators then leads to the following
quantities

Ḡ(K0, z) =
2
N

∑
k′∈M0

1
z + µ − εK0+k′ − Σ(K0, z)

Ḡ(Kπ , z) =
2
N

∑
k′∈Mπ

1
z + µ − εKπ+k′ − Σ(Kπ, z)

(3)

The special form of the dispersion (2) allows for a conversion of the expres-
sions (3) into energy integrals

Ḡ(K0, z) = 2

∞∫
0

dερ(0)(ε)
1

z + µ + ε − Σ(K0, z)

Ḡ(Kπ, z) = 2

∞∫
0

dερ(0)(ε)
1

z + µ − ε − Σ(Kπ, z)

ρ(0)(ε) =
2
π2

K

(√
1 −

( ε

4

)2
)

(4)

with K(x) the complete elliptical integral of the first kind.
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For U = 0, the self energies in (4) are identically zero and the resulting
spectral functions defined as A(K, ω) = − 1

π�mḠ(K, ω + i0+) are shown in
Fig. 4. From weak-coupling theory [27] one expects no dramatic renormal-
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Fig. 4. Spectral functions for U = 0. Note the characteristic logarithmic van Hove
singularity at the chemical potential ω = 0.

ization of these structures at small values of U [28]. Only if one allows for
antiferromagnetic ordering, a gap will open, leading to a so-called Slater in-
sulator. Since such a magnetic ordering will always be present in finite size
calculations like exact diagonalization or QMC [26, 29], it is impossible to
extract informations about the structure of the one-particle excitations in
the paramagnetic phase from these calculations, except for high tempera-
tures. One interesting feature of the DCA however is that it allows to ar-
tificially suppress the magnetic ordering even in the ground state and thus
enables one to extract informations about the developement of the dynamics
in the paramagnetic state in the limit T → 0. The results of this calculation
with the NRG for three different values U = t = 1

8W , U = 6t = 3
4W and

U = 16t = 2W of the Coulomb parameter are shown in Fig. 5. Most notably,
a gap opens at the Fermi surface independent of the value of U . Since no
long range antiferromagnetic order is present, which would naturally lead to
such a gap due to the reduced translational symmetry, this gap has to be
attributed to strong short-ranged correlations present in the system even for
infinitesimally small U .

Another interesting quantity is the momentum distribution function nk.
For a conventional Fermi liquid, this function shows a jump at the Fermi
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Fig. 5. Spectral functions for U = t, U = 6t and U = 16t. For all three values there
is a finite gap at the Fermi energy. The inset shows the coarse grained momentum
distribution nK. The color coding is the same as in the main panel. Note that for
large U n0 and nπ come closer, a typical sign for localization in real space.

wave vector, while a Mott insulator should exhibit a constant nk = 0.5, i.e.
the electronic states are completely localized in real space. Of course, from
two K points it is impossible to infere whether there is a jump at the Fermi
wave vector or not. However, certain trends can be seen and interpreted. The
inset to Fig. 5 shows the coarse grained nK with the same color coding as
in the main panel. Note that for very small U the momentum distribution
looks like that of the system at U = 0. However, with increasing U , weight is
shifted into the region above the Fermi surface of the noninteracting system,
eventually leading to n0 ≈ nπ ≈ 1/2, i.e. the distribution characteristic for
the Mott insulator. Thus, while the system is insulating for all U > 0, the
character of the electronic degrees of freedom seems to change nevertheless
with increasing U , eventually leading to a Mott insulator at large enough
U . Whether this will be a smooth crossover or possibly a transition can of
course not be infered from these results. However, recent investigations of the
antiferromagnetic state in the DMFT suggest that one rather should expect
a smooth crossover [32].

One might of course suspect that this behavior is an artefact of the small
cluster size of Nc = 2 used here. That this is not the case can be inferred from
DCA calculations for larger clusters using finite temperature QMC [24]. Here,
too, no Slater limit in the sense that a finite critical U exists where the gap in
the spectrum vanishes can be found. While QMC calculations are typically
restricted in the accessible values of Coulomb parameter U and temperature
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T , such restrictions do not apply to the NRG. Hence, in particular for finite
doping, we expect the NRG to be a rather powerful tool to address the
question of possible non Fermi liquid properties as T → 0.

Summary and conclusions

Since its developement in 1998 the DCA has become a tool to systematically
study the influence of nonlocal correlations on the physics of correlated elec-
tron systems. While one of the major achievments surely was the observation
of d-wave superconductivity for the Hubbard model [14], another important
aspect is the question, whether for the 2D Hubbard model there exists a pa-
rameter regime where non Fermi liquid physics can be observed in the ground
state. Certain evidence exsists from QMC calculations at finite temperatures
within the DCA [20,30], while weak-coupling results suggest the existence of
a very small low-energy scale [31]. The final answer whether even in the DCA
one might again encounter a Fermi liquid at very low temperatures requires a
non-perturbative tool that allows to do calculations close to or at T = 0. Such
a tool is the NRG, which has alredy proven its potentials in connection with
the DMFT. Here, a first application of this technique to solve the embedded
cluster problem of the DCA is presented. Currently, we are restricted to clus-
ter sizes Nc = 2, but this is already sufficient to observe generic properties of
the Hubbard model, like the formation of a gap without long-range magnetic
order for arbitrarily small values of U at half filling. Since we believe that the
question whether for small doping the system may exhibit Fermi liquid prop-
erties at T = 0 or not is intimately connected to short-ranged fluctuations,
which are captured by the Nc = 2 cluster already, we believe that at least a
qualtiative answer will be possible. Work along these lines is in progress.
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