
BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e

CCA Port, Component & Application
Build Skeleton Templates

“A new script toolkit for generating CCA
build skeletons”

CCA Port, Component & Application
Build Skeleton Templates

“A new script toolkit for generating CCA
build skeletons”

Torsten Wilde and James Kohl
Oak Ridge National Laboratory

CCA Forum Quarterly Meeting
Knoxville, TN ~ January 2004

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

1

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
What’s this all about?What’s this all about?

• Creating your own build environment from scratch is not easy unless you
are experienced…

• Very hard/impossible if you are not (most users ? ☺)

• As the complexity increases (e.g. for rpms), the difficulty level increases as
well

• CCA build structure is relatively complicated
• lots of dependencies
• additional tool requirements (e.g. Babel)

• Steep learning curve could scare off potential users

• Build “Templates” (Note: NOT C++ Templates) can help you to generate
basic CCA code structure in a well defined way

2

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
RequirementsRequirements

• Designing a build system is a trade-of between standardization
& user flexibility

• Ports are installed for use in CCA components (include/cca-
ports, lib/cca-ports)

• Components are installed for use in an application
(cca/components)

• Applications combine port and component implementations
into a full executable (cca/applications)

• Goal: High level template configuration should be flexible,
e.g. using configure, automake, libtools & rpm technology,
but should be automated and hide the complexity

3

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Template vs. Build SkeletonTemplate vs. Build Skeleton

• The template files are installed once on your system
• There are generic templates for ports, components or applications

• The build skeleton is created automatically from the templates
• The user edits ONE template configuration file and uses a perl

script to generate the specific project skeleton from the generic
template files (including subdirectories)

4

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
OutlineOutline

• Two parts:
• How to create/use the skeleton

• Behind the scenes

5

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Example: Application SkeletonExample: Application Skeleton

• Task: Create an application that uses an existing component and
an internal driver (driver lives in the application directory)

• Requirements:
• The component and the port used by the driver are already

installed on the system
• The application template is installed

• Example will show and explain the steps involved in the
creation and use of the build skeleton

• (similar but less complicated procedures are used for the port
and component build skeletons)

6

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Creation ProcessCreation Process

• 10 step process
• 1. User goes into project directory
• 2. User executes:

• create-cca-application --init
• This will generate the “template-config” file and a usage documentation

file in the current directory
• 3. User edits the template-config file
• 4. User executes:

• create-cca-application --all
• This will generate the application build skeleton

• 5. User copies SIDL file for the driver into the driversubdir/sidl/
• 6. User executes:

• ./run_babel.sh
• This script enters all subdirs and executes a script that generates the source

files from the SIDL file using the Babel compiler

7

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Creation Process continuesCreation Process continues

• 7. User edits the Babel _impl files
• 8. User edits .in files

• Including info .in, framework files (run_cmdline.in, rc.in files)
• 9. User executes:

• ./autogen.sh
• This will call autoconf, automake & libtools on all configure.ac and

Makefile.am in the current source tree
• At the end it will call the top level configure

• Any provided -- options are passed on to it

• 10. Then, user can call:
• Make
• Make install
• Make uninstall
• Make rpm
• Make backup

8

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
OutlineOutline

• Templates vs. Build Skeleton

• Two parts:
• How to create/use the skeleton

• Behind the scenes

9

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Step 2,3 & 4 in more detailStep 2,3 & 4 in more detail

• “create-cca-application –help” shows all available options
• --init

• Creates initialization files in the current directory
• --all

• Builds templates for all packages defined in “template-config” file
• --main

• Builds only the main package templates
• --package=PACKAGE_NAME

• Builds only the specific package template
• --packageexclude=PACKAGE_NAME

• Excludes the specified package from the build tree
• --packagedelete=PACKAGE_NAME

• Deletes the specified package from the build & the directory tree

10

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Step 2,3 & 4 in more detailStep 2,3 & 4 in more detail

• The “README_ TEMPLATE” file
• provides step-by-step description of the skeleton creation & usage

process

• The “template-config.tempin” file
• This file is the template configuration file
• Packages are defined between [package_name] [/package_name] blocks
• Package [MAIN] [/MAIN] is the only required package name

• Additional packages can be added or delete by the user
• Any change to this file requires re-execution of “create-cca-application”

11

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Template-config.tempin in detailTemplate-config.tempin in detail

• [MAIN]
The name of your application (also autoconf package name)
XXX_MY_NAME_XXX = app-Test-getSumPort

package version
XXX_VERSION_XXX = 0.1

XXX_CONTACT_EMAIL_XXX = wildet@ornl.gov

RPM info
XXX_RPM_SUMMARY_XXX = “bla bla."
XXX_RPM_DESCRIPTION_XXX = “bla bla"
XXX_PACKAGELICENSE_XXX = LGPL
XXX_RPM_GROUP_XXX = Development
XXX_RPM_REQUIRES_XXX =

component type
XXX_CCA_COMPONENT_TYPE_XXX = babel

additional autoconf macros (list separated by spaces)
XXX_ADD_AUTOCONF_MACROS_XXX =

• [/MAIN]

12

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
continuecontinue

• # your component name (will be name of subdir as well)
[Apps-Driver]
Name of your sidl file including subdirs
XXX_SIDL_FILE_NAME_XXX = sidl/driver.sidl
XXX_SIDL_IMPLEMENTATION_CLASS_NAME_XXX = Drivers.Driver
XXX_SIDL_SERVER_TYPE_XXX = C++
additional linker flags
XXX_ADD_LINK_FLAGS_XXX =
additional compiler flags
XXX_ADD_COMPILER_FLAGS_XXX =
list one client port library for each port used and provided
installed client port libs are usually in: usr/local/lib/cca-
ports
XXX_CLIENT_PORTS_LIB_XXX = -lgetSumPort-client-Cxx
additional needed user library directories & user libraries
add -l in front of each library and -L for each library
directory
XXX_ADD_LIB_DIRS_XXX =
XXX_ADD_LIBS_XXX =
additional needed user header directories
add -I in front of each directory
XXX_ADD_HEADER_DIRS_XXX =
[/Apps-Driver]

13

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Step 6 “run_babel.sh” in more detailStep 6 “run_babel.sh” in more detail

• Script that goes into subdirs and will call “create-client-
interface.sh” if there

• Usage : “./run_babel.sh” [OPTION] [OPTION ARGUMENT] ...
• Options:

• -[h] or -[-help]
Print out command line help.

• -[sbcd] [CCA Spec Babel Config Dir]
Points to the directory where the cca-spec-babel-config file is installed.
(e.g. -sbcd /usr/local/bin)

• -[bd] [BABEL EXECUTABLE DIR]
Points to the directory where the babel executable is installed.
(e.g. -bd /usr/local/bin)

14

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Step 8 “autogen.sh” in more detailsStep 8 “autogen.sh” in more details

• Script file that will call automake, autoheader and autoconf on
all files recursively (if needed)

• Usage: “./autogen.sh” [OPTION] [OPTION ARGUMENT]
[ARGUMENTS] …

• Options:
• -[h] or -[-help]

Print out command line help.
• -[acmd] [autoconf macro directory]

Points to the directory where the standard skeleton autoconf macros are
installed. (e.g. -acmd /usr/local/cca/components/autoconf-macros-dir)

• [ARGUMENTS]
whatever you would like to let autogen.sh call all configure with at the end
(e.g. –prefix=MY_INST_DIR –with-babel=BABEL_DIR)

15

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
What happens if you change stuff?What happens if you change stuff?

• User can edit all build system files by hand after skeleton was
created if he needs to (no re-run of the create-cca-xxx
command is required)

• If the user changes/deletes or adds entries in the template-
config.tempin file, create-cca-xxx has to be re-run

• User can specify the desired behavior with command line
options
• Using --package, --all or --main will overwrite only required files (it

will make a backup of each file that was changed by the user)
• Using --force in addition will make no backups
• Using --cleanup before rebuilding will erase subsequent build

information, after that all files are rebuild

16

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
ConclusionConclusion

• Relative easy to use (provided you use standard install locations)
• only one file to edit
• 3 commands to call

• Hides build system complexity from the normal user
• Can specify additional configure macros and can use their variables inside the

template-config file
• Can specify specific compile/link options inside the template-config file

• Leaves all flexibility in (for advanced users)
• If needed, configure.ac & Makefile.am can be edited directly (changes will be

preserved using backup before overwriting)

• Should make the transition to developing for CCA much easier by saving
the time and effort needed to create a CCA compatible build environment

17

BBB
UUU
III
LLL
DDD

SSS
KKK
EEE
LLL
EEE
TTT
OOO
NNN

©
 T

or
st

en

©
 T

or
st

en

©
 T

or
st

en

W
ild

e
W

ild
e

W
ild

e
Future WorkFuture Work

• Probably more to do then apparent
• Enable multiple autoconf macro directories
• Cleanup standard compile/link flags
• Streamline and improve documentation

• Just finished test process last Friday
• Testers/CCA Developers needed to test design and get feedback
• Maybe additional variables or other structuring is needed
• Maybe converting shell script files to perl scripts
• Making skeletons a more generic build tool?

• could be done by taking out CCA specific configure macros and prefixes &
putting them into a internal specification file

• For babel or classic mode

• Demo will now follow

	CCA Port, Component & ApplicationBuild Skeleton Templates“A new script toolkit for generating CCA build skeletons”
	What’s this all about?
	Requirements
	Template vs. Build Skeleton
	Outline
	Example: Application Skeleton
	Creation Process
	Creation Process continues
	Outline
	Step 2,3 & 4 in more detail
	Step 2,3 & 4 in more detail
	Template-config.tempin in detail
	continue
	Step 6 “run_babel.sh” in more detail
	Step 8 “autogen.sh” in more details
	What happens if you change stuff?
	Conclusion
	Future Work

