Torsten Wilde and James Kohl
Oak Ridge National Laboratory

CCA Forum Quarterly Meeting
Knoxville, TN ~ January 2004

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract No. DE-AC05-000R22725 with UT-Battelle, LLC.

S lorsSen

Whldle

Creating your own build environment from scratch is not easy unless you
are experienced...
» Very hard/impossible if you are not (most users ? ©)

As the complexity increases (e.g. for rpms), the difficulty level increases as
well

CCA build structure is relatively complicated
 |ots of dependencies
 additional tool requirements (e.g. Babel)

Steep learning curve could scare off potential users

Build “Templates” (Note: NOT C++ Templates) can help you to generate
basic CCA code structure in a well defined way

[« [¢] [>] 1

E Requirements

f Designing a build system is a trade-of between standardization
B & user flexibility

Ports are installed for use in CCA components (include/cca-

3

f; ports, lib/cca-ports)

= Components are installed for use in an application

[r: (cca/components)

I_‘ Applications combine port and component implementations
G Into a full executable (cca/applications)

Goal: High level template configuration should be flexible,
e.g. using configure, automake, libtools & rpm technology,
but should be automated and hide the complexity

[« [¢] [>] 2

S lorsSen

Whldle

The template files are installed once on your system
» There are generic templates for ports, components or applications

The build skeleton is created automatically from the templates

The user edits ONE template configuration file and uses a perl|
script to generate the specific project skeleton from the generic
template files (including subdirectories)

Two parts:
 How to create/use the skeleton

e Behind the scenes

E Example: Application Skeleton

r Task: Create an application that uses an existing component and
- an internal driver (driver lives in the application directory)

3

N U

Requirements:

The component and the port used by the driver are already
Installed on the system

= e The application template is installed
T

=

i\ Example will show and explain the steps involved in the
creation and use of the build skeleton

(similar but less complicated procedures are used for the port
and component build skeletons)

[« [¢] [>] :

S lorsSen

Wilcle

10 step process

1. User goes Iinto project directory
2. User executes:
 create-cca-application --init

» This will generate the “template-config” file and a usage documentation
file in the current directory

3. User edits the template-config file

4. User executes:
 create-cca-application --all
» This will generate the application build skeleton

5. User copies SIDL file for the driver into the driversubdir/sidl/
6. User executes:

e ./run_babel.sh

« This script enters all subdirs and executes a script that generates the source
files from the SIDL file using the Babel compiler

[« [¢] [>] :

S lorsSen

Whldle

7. User edits the Babel _impl files

8. User edits .in files
 Including info .in, framework files (run_cmdline.in, rc.in files)

9. User executes:

« ./autogen.sh

» This will call autoconf, automake & libtools on all configure.ac and
Makefile.am in the current source tree

» At the end it will call the top level configure
* Any provided -- options are passed on to it

10. Then, user can call:
 Make

* Make install

* Make uninstall

* Make rpm

» Make backup

Templates vs. Build Skeleton

Two parts:
 How to create/use the skeleton

* Behind the scenes

@IS ER

Whldle

“create-cca-application —help’” shows all available options

--init

 Creates initialization files in the current directory
--all

» Builds templates for all packages defined in “template-config” file
--main

» Builds only the main package templates
--package=PACKAGE_NAME

 Builds only the specific package template
--packageexclude=PACKAGE_NAME

» Excludes the specified package from the build tree
--packagedelete=PACKAGE_NAME

» Deletes the specified package from the build & the directory tree

[« [¢] [>] 9

[The “README_ TEMPLATE” file

1= » provides step-by-step description of the skeleton creation & usage
P process

|4 The “template-config.tempin” file
E » This file is the template configuration file
» Packages are defined between [package name] [/package name] blocks

- Package [MAIN] [/MAIN] is the only required package name
c « Additional packages can be added or delete by the user
N » Any change to this file requires re-execution of “create-cca-application”

@IS ER
Wihldle

10

@IS ER

Whldle

[MAIN]
The name of your application (also autoconf package name)
XXX_MY_NAME_ XXX = app-Test-getSumPort

package version
XXX_VERSION XXX = 0.1

XXX_CONTACT_EMAIL_XXX = wildet@ornl .gov

RPM 1nfo

XXX_RPM_SUMMARY_XXX = “bla bla."
XXX_RPM_DESCRIPTION_ XXX = “bla bla"
XXX_PACKAGELICENSE_XXX = LGPL

XXX _RPM_GROUP_XXX = Development
XXX_RPM_REQUIRES XXX =

component type
XXX_CCA COMPONENT_TYPE_ XXX = babel

additional autoconft macros (list separated by spaces)
XXX_ADD_AUTOCONF_MACROS_ XXX =

[/MAIN]

11

@IS ER

Whldle

your component name (will be name of subdir as well)
[Apps-Driver]]

Name of your sidl file including subdirs

XXX _SIDL_FILE NAME XXX = sidl/driver.sidl

XXX _SIDL IMPLEMENTATION_ CLASS NAME XXX = Drivers.Driver

XXX _SIDL_SERVER_TYPE XXX = C++

additional linker flags

XXX_ADD_LINK_FLAGS XXX =

additional compiler flags

XXX _ADD COMPILER_FLAGS XXX =

list one client port library for each port used and provided
installed client port libs are usually in: usr/local/lib/cca-
ports

XXX _CLIENT_PORTS _LIB_ XXX = -lgetSumPort-client-Cxx

additional needed user library directories & user libraries
add -1 1n front of each library and -L for each library
directory

XXX_ADD_LIB DIRS XXX =

XXX_ADD _LIBS XXX =

additional needed user header directories

add -1 1n front of each directory

XXX_ADD HEADER _DIRS XXX =

[/Apps-Driver]

[« [¢] [>] 12

| Script that goes into subdirs and will call “create-client-
= | interface.sh” if there

D

S e Usage : “./run_babel.sh” [OPTION] [OPTION ARGUMENT] ...

” e Options:

= « -[h] or -[-help]

B Print out command line help.

E » -[shbcd] [CCA Spec Babel Config Dir]

' Points to the directory where the cca-spec-babel-config file is installed.
O (e.g. -sbed /usr/local/bin)

N . -[bd] [BABEL EXECUTABLE DIR]
Points to the directory where the babel executable is installed.
(e.g. -bd /usr/local/bin)

S lorsSen
Whilcle

[« [¢] [>] 13

S lorsSen

Wilcle

Script file that will call automake, autoheader and autoconf on
all files recursively (if needed)

o Usage: “./autogen.sh” [OPTION] [OPTION ARGUMENT]
[ARGUMENTS] ...
o Options:
o -[h] or -[-help]
Print out command line help.

» -[acmd] [autoconf macro directory]
Points to the directory where the standard skeleton autoconf macros are
installed. (e.g. -acmd /usr/local/cca/components/autoconf-macros-dir)

« [ARGUMENTS]
whatever you would like to let autogen.sh call all configure with at the end
(e.g. —prefix=MY _INST_DIR —with-babel=BABEL_DIR)

[« [¢] [>] 14

: What happens if you change stuff?

[User can edit all build system files by hand after skeleton was
= created If he needs to (no re-run of the create-cca-xxx
E command is required)

“ If the user changes/deletes or adds entries in the template-
= config.tempin file, create-cca-xxx has to be re-run

= User can specify the desired behavior with command line

G options

N » Using --package, --all or --main will overwrite only required files (it
will make a backup of each file that was changed by the user)

» Using --force in addition will make no backups

» Using --cleanup before rebuilding will erase subsequent build
Information, after that all files are rebuild

[« [¢] [>] 15

S lorsSen

Whldle

Relative easy to use (provided you use standard install locations)
« only one file to edit
e 3 commands to call

Hides build system complexity from the normal user

» Can specify additional configure macros and can use their variables inside the
template-config file

» Can specify specific compile/link options inside the template-config file

Leaves all flexibility in (for advanced users)

* If needed, configure.ac & Makefile.am can be edited directly (changes will be
preserved using backup before overwriting)

Should make the transition to developing for CCA much easier by saving
the time and effort needed to create a CCA compatible build environment

[« [¢] [>] 16

[Probably more to do then apparent

- » Enable multiple autoconf macro directories
» Cleanup standard compile/link flags

« Streamline and improve documentation

= Just finished test process last Friday

Testers/CCA Developers needed to test design and get feedback
Maybe additional variables or other structuring is needed
Maybe converting shell script files to perl scripts

Making skeletons a more generic build tool?

N could be done by taking out CCA specific configure macros and prefixes &
putting them into a internal specification file

» For babel or classic mode

— 11—
e o o

Demo will now follow

[« [¢] [>] 17

S lorsSen
Wihlcla

	CCA Port, Component & ApplicationBuild Skeleton Templates“A new script toolkit for generating CCA build skeletons”
	What’s this all about?
	Requirements
	Template vs. Build Skeleton
	Outline
	Example: Application Skeleton
	Creation Process
	Creation Process continues
	Outline
	Step 2,3 & 4 in more detail
	Step 2,3 & 4 in more detail
	Template-config.tempin in detail
	continue
	Step 6 “run_babel.sh” in more detail
	Step 8 “autogen.sh” in more details
	What happens if you change stuff?
	Conclusion
	Future Work

