
Enabling the Co-Allocation of Grid Data Transfers

Sudharshan Vazhkudai
Computer Science and Mathematics Division, Oak Ridge National Laboratory

vazhkudaiss@ornl.gov

Abstract

Data-sharing scientific communities use storage systems as
distributed data stores by replicating content. In such highly
replicated environments, a particular dataset can reside at
multiple locations and can thus be downloaded from any one
of them. Since datasets of interest are significantly large in
size, improving download speeds either by server selection or
by co-allocation can offer substantial benefits.

In this paper, we present an architecture for co-allocating
Grid data transfers across multiple connections, enabling the
parallel download of datasets from multiple servers. We have
developed several co-allocation strategies comprising of
simple brute-force, history-based and dynamic load balancing
techniques as a means both to exploit rate differences among
the various client-server links and to address dynamic rate
fluctuations. We evaluate our approaches using the GridFTP
data movement protocol in a wide-area testbed and present
our results.

Keywords: Data Grids, Co-allocation, Partial Transfers,
Scheduling, Peer-to-peer.

1. Introduction

Replicating popular content in the interest of offloading host
severs is a widely used practice (FTP mirror sites, web caching
[ZMF98, MLB95, Wang99] etc.). Recently, this trend is being
put to extensive use in large-scale, data-sharing scientific
communities where pieces of large datasets are replicated over
several sites [LIGO02, DataGrid02, HSS00, GriPhyN02,
SDSS02, MMR+01, NM02]. For example, several high-energy
physics experiments have agreed on a tiered Data Grid
architecture [Holtman00, HJS+00] in which all data
(approximately 20 petabytes by 2006) is located at a single
Tier 0 site; various (overlapping) subsets of this data are
located at national Tier 1 sites, each with roughly one-tenth the
capacity; smaller subsets are cached at smaller Tier 2 regional
sites; and so on. Therefore, any particular dataset is likely to
have replicas located at multiple sites.

Different replica locations are bound to offer varied
performance rates due to different architectures, system load
and network connectivity. Thus, downloading large datasets

(10 MB – 1 GB) from anyone of the replica locations can
result in a varied end-user experience.

A typical Internet download between a client and a server is
mired by several bottlenecks (Figure 1a) [Akamai00]. First, the
bandwidth achievable by the client is limited by the bandwidth
of the server’s connection to the Internet (First-Mile),
compounded further by simultaneous client requests. Second,
the achievable bandwidth is further limited by the congestion
in the link connecting the server and the client. Third, the
bottleneck could be in the client’s own connectivity to the
Internet (Last-Mile). Thus, the download speed is only as fast
as the slowest link in the aforementioned setup. Sophisticated
solutions are required to significantly address this issue.

One way to improve download speeds is to employ complex
server selection techniques to determine the best replica
location, offering high transfer rates, using a combination of
server and network load details [Akamai02, VTF01]. In
practice, however, due to the shared nature of network links
the load on them can vary unpredictably. Thus, in the face of
transient network conditions, downloading datasets even from
the best of servers can often result in ordinary transfer rates.

A promising alternative is to download data from multiple
locations, establishing multiple connections in parallel (Figure
1b). With this approach, instead of downloading the entire
dataset from a single sever, unique partial copies of the dataset
are fetched from multiple servers in parallel that are later
reassembled at the client end.

This co-allocation of data transfers has several relevant
properties of significant interest to us. First, it obviates the
need for complex server selection. Second, due to its
decentralized nature the eventual performance achieved may
not be adversely affected by degradation in any of the co-
allocated flows while also being resilient to server failures.
Third, the client download experience can be positively
amplified with the aggregate bandwidth commensurate to the
summation of the individual transfer rates of each flow.
Fourth, it significantly alleviates the first-mile (slow server,
serving a fast client) and the Internet congestion problem by
distributing load to multiple servers and different routes
(Figure 1b). Even in the case of a slow client served by a fast
server, co-allocation can offer significant benefits due to
fluctuations in network conditions.

S

Co-allocating data transfers across multiple replica locations
can have widespread applicability beyond scientific data-
sharing communities. For instance, Internet content
distribution networks [JCD+00] that manage consistent
replicas of popular content on surrogate, edge-servers, closer to
end-users [Akamai00] or peer-to-peer systems that achieve file
sharing in a decentralized manner [CP02] can significantly
benefit from parallel downloading. Content distribution
networks [Akamai02, Speedera02] cater to much of the
Internet content provider traffic and attempt to improve
download speeds by employing techniques such as request
redirection [WPP02, KRR00] to fetch data from less congested
links; while peer-to-peer downloads siphon much of the
available Internet bandwidth—up to 60% on any service
provider network [Sandvine02, SGG02]. Co-allocations in
such cases can help improve download speeds, reduce load on
certain parts of the network, alleviate loaded peers, etc.

In this paper we develop a basic architecture for co-allocating
Grid data transfers and build a few techniques for downloading
data in parallel, from multiple servers. We develop three
techniques: (1) brute force co-allocation, (2) history-based co-
allocation of flows and (3) dynamic load balancing. We apply
these techniques to the GridFTP [AFN+01] data movement
tool, part of the Globus ToolkitTM [FK98], and evaluate our
approaches by conducting performance experiments in a wide-
area testbed. Our results indicate a significant increase in
bandwidth due to distributed downloads and denote that
dynamic solutions outperform static approaches.

2. Related Work

Developing techniques for parallel downloads of Internet
documents is of significant interest in the networking
community and can be broadly classified into stateless and
stateful approaches.

Stateless approaches to the parallel access problem rely on
clients subscribing to several mirror sites to restitute the data.
This approach makes extensive use of erasure codes [Rizzo97]
to develop an “n” packet encoding of a “k” packet file, with
the property that the file can be reassembled from any “k”
packet subset of the encoding [BCM+02, BLM02]. Pros of this

approach are: obviates the need for maintaining file ranges and
renegotiations on a per flow basis, fault tolerance and
scalability; while the cons are: constructing an “n” packet
encoding is nontrivial, cost of encoding and decoding can be
significant for large dataset size, and clients and servers are
required to agree, apriori, on common encoding schemes.
Other related effort includes Rabin’s [Rabin89] and
Maxemchuk’s [Maxemchuk75] work on dispersing pieces of
the file on different nodes in the network for fault tolerance
and dispersity routing respectively.

On the contrary, stateful techniques divide the file into disjoint
sets, downloading different ranges from different servers. In
[RKB00, Gkantsidis02], the authors develop previous history-
based and dynamic solutions, demonstrating their techniques
for web-based documents of the order of several hundred
kilobytes. Accurate predictions of range distributions are
required for several stateful techniques, which are often quite
difficult to obtain in the face of changing network conditions.
In [RKB00, Gkantsidis02], the authors rely on simple averages
of previous transfer rates as an estimate for range calculations
per flow. Work from Beck et al., demonstrated the usefulness
of dynamic distributed downloads in the context of streaming
applications by fetching multiple copies of file blocks in order
to address jitter [PAD+02].

In our work we develop history-based and dynamic solutions
similar to that of [RKB00, Gkantsidis02, PAD+02], but extend
it by addressing network fluctuations. Further, we employ
prediction techniques, deriving from our previous work
[VSF02] on predicting data transfer rates between sources and
sinks, for range calculations per flow that can significantly
improve our performance and reduce renegotiations. The use
of encoding schemes, and thus the stateless alternative, may
not be suited for our purposes due to our concentration on
large datasets, for which encoding and decoding times can be
quite significant.

3. A Co-Allocation Architecture

The Globus Toolkit [FK98] provides a basic template for
resource management [CFK99], which can be extended to
support the co-allocation of Grid data transfers. As illustrated

Last
Mile

First
Mile

S CInternet

Last
Mile

S C Internet

S

(a) Typical Internet Download (b) Co-Allocated Download

Figure 1. (a) Various bottlenecks in the Internet document download – the
first mile problem, the congestion in the links connecting server and client
and the last mile problem. (b) Co-Allocated download model minimizes
the first mile and the link congestion bottlenecks.

in Figure 2, the architecture comprises of three main
components: an information service, local storage systems, and
broker/co-allocator. An application requiring access to data
presents a description of the data to the broker. The broker, in
conjunction with information services [CFF+01], identifies
possible alternatives from where the dataset in question can be
fetched. This set is then presented to the co-allocation agent,
which uses a combination of information services and some
heuristics to map the data transfer request across multiple
replica locations to download the data in parallel using
GridFTP.

3.1. GridFTP and Support for Partial Copy

GridFTP [AFN+01] is part of the Globus Toolkit™ and is
widely used as a secure, high-performance data transfer
protocol in Grids with features such as security, parallel
streams, partial file transfers, and third party transfers. Of
particular interest to us is the ability to fetch partial copies of a
file. Partial copy is part of GridFTP’s extended retrieve
functionality, which is used to request that a retrieve be done
with some additional processing on the server. With partial
copy, a section of the file, defined by the starting offset and
extent, will be retrieved from the data server.

3.2. Allocation Mechanisms

We now proceed to describe the co-allocation mechanisms that
we have developed.

3.2.1. Brute-Force Co-Allocation

Brute-force co-allocation works by dividing the file size
equally among available flows. Thus, if the data to be fetched
is of size, “S” and there are “n” locations to fetch it from, then

this technique assigns to each flow a data block of size, “S/n”.
With this technique, although all the available servers are
utilized, bandwidth differences among the various client-server
links are not exploited.

3.2.2. History-based Co-Allocation

To address and exploit transfer rate differences among the
various co-allocated flows, we develop a history-based
allocation scheme. With this technique, the block size per flow
is commensurate to its predicted transfer rate, decided based on
a previous history of GridFTP transfers. If these predictions
are not accurate enough, renegotiations of flow sizes might be
necessary as slower links can get assigned larger portions of
data, which could weigh heavily on the eventual bandwidth
achieved.

In order to obtain accurate predictions of transfer rates for the
various links, we derive from our previous work on forecasting
GridFTP transfers. Our previous work delved into deriving
accurate predictions (within 15% error) in the face of network
and system load fluctuations. For purposes concerning co-
allocations, we use a temporal variation of average predictor
(moving average over time) [VSF02].

With the history-based approach, the client divides the file into
“n” disjoint blocks, corresponding to “n” servers. Each server,
“i”, 1 ≤ i ≤ n, has a predicted transfer rate of “Bi” to the client.
In theory then, the aggregate bandwidth achievable by the
client for the entire download is:

Figure 2. Resource management architecture and the
role of co-allocation. Co-allocator combines broker
decisions and information services to map data transfer
requests onto storage systems using GridFTP and
Globus Access to Secondary Storage (GASS).

 i=n

A = Σ Bi
 i=1

where “Bi” is the predicted bandwidth per flow and “A” is the
aggregate bandwidth. Such a speedup can only be achieved
when all servers are busy at all times during the entire
download. In practice, however, the achieved bandwidth is
limited due to network congestion in the various flows
(resulting in some servers finishing earlier than others) and the
client’s ability to handle the bandwidth surplus.

Assuming the client is capable of handling the bandwidth
surplus, range distributions are calculated as follows. For each
server “i”, and for a replica size, “S”, the block size per flow
is:

 Bi
 si = ______ * S

 A
where “si” is the block size per flow. Thus, the block size per
flow is commensurate to its transfer rate and its ratio of
contribution to the achievable aggregate bandwidth. Faster
servers are assigned to deliver bigger portions of the file, while
slower servers are assigned smaller pieces. In this manner, this
scheme addresses the transfer rate differences among the
various co-allocated flows.

3.2.3. Dynamic Co-Allocation

Although we have addressed the rate differences in the flows
and exploited it to deliver proportionate pieces of the file per
flow, we do not address dynamic network variations that can
cause degradation in transfer rates. Despite careful bandwidth
estimates per flow, network traffic and system load can cause
servers, previously determined as fast or slow, to behave
differently. Thus, an end-user is typically interested in
dynamic rate adaptation.

One way to address this is to monitor the progress of history-
based co-allocated flows, to perform corrective measures in
case of performance degradation. For instance, if the
performance in a particular flow drops below a threshold, the
transfer can be migrated to an alternate location or remaining
data can be equally distributed among other existing flows.

Although in theory, these are feasible alternatives, in practice,
however, such techniques are quite complex to realize for the
following reasons. First, we need to add additional dynamic
monitoring capability to our data movement protocol to
monitor each flow, which can significantly contribute to the
overhead. Second, we need criteria to determine performance
degradation, which can be difficult due to changing
network/system conditions. Third, even if degradation could be
determined, corrective measures such as transfer migration or
resizing may require significant renegotiation between clients
and servers, which can be more costly than the existing
decrease in performance.

A promising alternative is the use of dynamic co-allocation.
We develop two variations of dynamic co-allocation: (1)
Conservative Load Balancing and (2) Aggressive Load
Balancing.

Conservative Load Balancing: With this approach, the rate,
and thus how much a server delivers, is decided dynamically
instead of being based on previous history. The dataset in
question is divided into “k” disjoint blocks of equal size and
each one of the available servers is assigned to deliver, in
parallel, one block initially. Once a server delivers the block,
another block is requested and so on, until the entire file is
downloaded.

Faster servers and servers connected to the client through less
congested or faster links, will deliver quickly, thus serving
larger portions of the file when compared to their slower
counterparts. Thus, with this technique, the load on the co-
allocated flows is automatically adjusted so that congested
links and loaded or slower servers are not further burdened.

With this technique, the number of blocks per download can
affect the throughput achieved. We could either have a large
number of small blocks or a small number of large blocks. We

study the effect of using different block counts and sizes in
Section 4.

The key to achieving maximum aggregate bandwidth, as stated
earlier, is to keep all available servers busy at all times. In the
best case, each server is only idle for duration “t”, where “t” is
the time elapsed since the server delivered the last block and
until it receives a request for a new block. Neglecting client
side processing and multiprogramming at both ends, this is
roughly equivalent to one round-trip time, which is
insignificant compared to the entire download time.

One obvious downside to this approach is the eventuality of
waiting on the slowest server to deliver the final block (same
as history-based allocation). An alternative is to stop the
slowest flow or dynamically resize blocks to fetch the
remaining data from the other servers, although we do not
employ this technique.

Aggressive Load Balancing: With the previous method,
although faster servers deliver quickly, we only fetch one-
block size each time around. Similarly, slower servers would
again be assigned to deliver blocks. To address these issues,
we add the following functionality to our load balancing
scheme: (1) progressively increase the amount of data
requested from faster servers; and (2) reduce the amount of
data requested from slower servers or stop requesting data
altogether.

In order to achieve the stated effect, we develop a few
heuristics. For each block delivered by each flow, we compute
the rate achieved and compare it against the running maximum
of all flow rates. If the rate at which a flow delivered the block
is greater than the running maximum, we double the block size
for that flow and reset the maximum; if it is less, we maintain
the one-block size for the flow; and if the rate is significantly
less than the maximum, we stop using the flow. Thus, using
these techniques, we address dynamic rate changes in the
various co-allocated flows.

4. Results and Analysis

We evaluated the performance of our co-allocation schemes on
data collected over two distinct two-week periods during
October and December 2002. In the following sections we
describe the experimental setup, traces and our results.

4.1. Testbed Configuration

Our experiments comprised GridFTP transfers, using our co-
allocation clients, between five sites in our testbed: Argonne
National Laboratory (ANL), the University of Southern
California Information Sciences Institute (ISI), Lawrence
Berkeley National Laboratory (LBL), the University of Florida
at Gainesville (UFL) and Boston University (BU). All our sites
comprised of 100 Mb/sec Ethernets with high-end storage.

A prerequisite for downloading data from multiple servers is
that the various links connecting the client and servers be
bottleneck disjoint [RKB00, BLM02]. If the client-server links
share the same bottleneck then there can be little improvement
due to co-allocation. From Figure 3, it is evident that the
various client-server links for our setup are bottleneck-disjoint
(bottleneck bandwidths were determined using iperf [TF01]).

4.2. Experiment Setup

We performed wide-area data transfer experiments using the
GridFTP data movement tool. Our servers were standard
GridFTP available from the Globus 2.0 Toolkit, while our
clients included the various co-allocation schemes. Transfers
comprised several file sizes ranging from 10 MB to 1 GB.
These transfers were performed with tuned TCP buffer settings
(calculated using the bandwidth delay product as in Figure 3)
and eight parallel streams (per co-allocated flow) to achieve
enhanced throughput. All our transfers were performed with
co-allocation clients at either ANL or UFL. We use a mix of
fast and slow servers to study the effect therein.

4.3. Performance

In this section we discuss the performance of our co-allocation
clients. We evaluate four co-allocation schemes: (1) Brute-
Force (Brute), (2) History-based (History), (3) Conservative
Load Balancing (Conservative) and (4) Aggressive Load
Balancing (Aggressive). For the two load balancing
techniques, we study the effect of various block counts
(Conservative-5, Conservative-10, Conservative-15,
Aggressive-5, Aggrssive-10 and Aggressive-15) on the
bandwidth achieved. We compare each co-allocation scheme
against the base case of fetching the entire file from a single
server and study the bandwidth improvements therein. The
bandwidth measures are averages based on two-week’s worth
of transfers (up to 1200 transfers each month).

4.3.1. Impact of Client-Server Configurations

In Figures 4 and 5, we study the effect of slow servers (or
links) with similar performance, serving a fast client. We see

that all co-allocation schemes perform better than the base case
of downloading the entire file from a single server. We observe
that load balancing schemes perform better than brute-force or
history-based co-allocation and load balancing offers almost
double the performance when compared with the base case. In
the case of slow servers serving fast clients there is usually
residual bandwidth available that goes unused with typical
downloads. With a distributed download, this residual
bandwidth is utilized to achieve enhanced throughput.

0
1
2
3
4
5
6
7
8
9

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI UFL Brute History Conservative-5 Aggressive-5

I
s
s
to
d
p
s
r
7
o

Figure 3. Network settings for our testbed sites.
All sites are connected through OC-12 or OC-48
network links. For each site pair round trip times
and network bottleneck bandwidths for the link
between them is shown.

ANL

74 ms
86 Mb/sec

LBL

71 ms
 60.4 Mb/sec

57 ms
 66.6 Mb/sec

ISI UFL

51 ms
96.6 Mb/sec

29 ms
87.3 Mb/sec

BU

40 ms
60 Mb/sec
Figure 4. Servers are at ISI and UFL with client at
ANL (Oct’02). First two bars in each file size denote
downloading the entire file from either ISI or UFL,
while others denote co-allocated downloads using
the two servers. Depicts 95% confidence ranges.
0

1

2

3

4

5

6

7

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI BU Brute History Conservative-5 Aggressive-5
Figure 5. Servers are at ISI and BU with client at UFL
(Dec’02). Depicts 95% confidence ranges.
n Figures 6, 7, and 8, we use a mix of slow and fast servers to
tudy its effect on download. We observe that co-allocation
chemes are either better (gains up to 2 MB/sec) or comparable
 faster servers in isolation. The figures indicate that the gain

ue to co-allocation is inversely proportional to the
erformance gap between the servers. In Figure 6, a faster
erver saturates a client quickly, leaving available little
esidual bandwidth and no gain due to co-allocation. In Figures
 and 8, as the performance gap between the servers is low, we
bserve gains due to co-allocation.

0
2
4
6
8

10
12
14
16
18

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

LBL UFL Brute History Conservative-5 Aggressive-5

4

W
c
b
4
s
t
w
m
w

r
i
r
c

I
8
c
a

0
1
2
3
4
5
6
7

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ANL ISI BU
Brute History Conservative-5
Aggressive-5

Figure 8. Servers are at ANL, ISI and BU with client
at UFL (Dec’02). Depicts 95% confidence ranges for
Figure 6. Servers are at LBL and UFL with client at
ANL (Oct’02). Depicts 95% confidence ranges.
0
1
2
3
4
5
6
7
8

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ANL ISI Brute History Conservative-5 Aggressive-5

.3.2. Sensitivity of Schemes towards Parameters

e analyzed the effect of file sizes, number of flows and block
ounts on the download performance – i.e., threshold values
eyond which co-allocation offered gains or saturated. Figures
 through 8 show that all our co-allocation schemes offer
ignificant performance improvements (when compared with
he base case) as the file size increases. For smaller file sizes
e see no improvements in using co-allocation using our data
ovement tool. A low value for the performance ratio, R,
here R is:

R = Co-allocation Cost / Total Time to Download,
esults in gains due to co-allocation. The cost of co-allocation
nvolves connection establishment, negotiations, reassembly,
esizing, etc. For smaller files, this co-allocation cost is high
ompared to the total download time.

n increasing the number of co-allocated flows (Figures 7 and
) we observed that for our testbed and client-server
onfigurations, download performance reached saturation at
bout 3 or 4 flows. While this is subjective to client-server

configurations, choosing an appropriate number of flows is
vital to the performance achieved.

bandwidth.

For our various load balancing techniques, we studied the
effect of using different block counts (5, 10 and 15). Figure 9
compares the variations of conservative and aggressive load
balancing techniques. From the figure we can infer that for
smaller file sizes the load balancing schemes perform better
with less number of blocks, while for larger file sizes more
blocks result in better performance. For our experiments and
our block counts we saw performance improvements of up to
1-2 MB/sec. With small files more blocks will result in more
overhead in terms of connection establishment, reassembly,
etc., when compared to the total download time; while with
large files less blocks can mean slower servers delivering
bigger portions of the file.

Figure 7. Servers are at ANL and ISI with client at
UFL (Dec’02). Depicts 95% confidence ranges.

4.3.3. Waiting on Slow Servers

For the load balancing schemes, we analyzed the effect of
faster servers waiting on slow servers to deliver the last block.
From Figure 10 we can observe that with conservative load
balancing (out of the times when slower servers finished last),
faster servers are idle for up to 17% of the total download time
waiting for slower servers to finish delivering the last block.
While aggressive balancing is not altogether devoid of this
trend, we observe almost up to 40% reduction in wait times
due to a progressive increase in the amount of data fetched
from faster servers. The figure also implies that using less
number of blocks with larger files results in slower servers
having to deliver larger pieces of data, thereby increasing the
idle time of faster servers.

5. Conclusion

In this paper we have described the significance of co-
allocating Grid data transfer requests across multiple servers,
thus enabling parallel downloads. We have developed an

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Sie

B
W

 (M
B

/s
ec

)

Conservative-5 Conservative-10 Conservative-15

0

5

10

15

20

10M 100M 500M 1G
File Size

W
ai

t t
im

e
as

 a
 p

er
ce

nt
 o

f
to

ta
l d

ow
nl

oa
d

tim
e

Conservative-5 Aggressive-5

architecture for downloading data from multiple servers,
exploiting the partial copy feature of the GridFTP data
movement tool. We have further developed several co-
allocation strategies comprising of simple brute-force, history-
based and dynamic load balancing techniques. We developed
several techniques both as a means to address rate differences
between the various flows and to address dynamic rate
adaptation.

We analyzed our approaches in a wide-area testbed with a mix
of fast and slow servers and observed that our techniques
offered significant benefits when compared to downloading the
entire file from a single server. Our results indicated an
increase in performance regardless of the speed of servers and
up to 2 x speedup for our testbed sites. We observed that our
techniques performed better for larger file sizes and that
dynamic approaches performed better than static ones. For

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

0
2
4
6
8

10
12
14

10M 100M 500M 1G
File Size

W
ai

t t
im

e
as

 a
 p

er
ce

nt

of
 to

ta
l d

ow
nl

oa
d

tim
e

Conservative-5 Aggressive-5

dynamic techniques, lesser blocks worked well for smaller
files and vice-versa for large files. Further, we observed that by
progressively increasing the amount of data fetched from faster
servers, we could reduce the waiting on slower servers to
finish. Future work includes analyzing dynamic block sizing to
address performance degradation.

Acknowledgments

This research was supported in part by fellowships from
Argonne National Laboratory and The University of
Mississippi. The fellowship from ANL (Summer of 2000 and
academic years 2001 and 2002) was due to support by the
Mathematics, Information and Computational Sciences Office,
Office of Advanced Scientific Computing Research, U. S.
Department of Energy, under contract No. W-31-109-Eng-38.
The fellowship from The University of Mississippi (Spring

(a) Conservative Balancing with servers at LBL, ISI and UFL (b) Aggressive Balancing with servers at LBL, ISI and UFL

Figure 9. Comparison between the variants of conservative and aggressive load balancing schemes using different
block counts for a client at ANL (Oct’02). Conservative-5 denotes a block count of 5.

(a) Servers at ANL and ISI with client at UFL (Dec’02). (b) Servers at LBL and UFL with client at ANL (Oct’02).

Figure 10. (a) ANL is the faster server having to wait on ISI. (b) LBL is the faster server having to wait on UFL. Bars
denote the wait time of the faster server as a percentage of total download time. Also depicts 95% confidence.

2003) was due to support from the Graduate School’s Doctoral
Dissertation Award. This research was also supported by the
U.S. Department of Energy under contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC. We further thank all the
system administrators of our testbed sites for their valuable
assistance.

References

[Akamai00] Internet Bottlenecks: The Case of Edge Delivery

Services. 2000, Akamai Whitepaper.
[Akamai02] Akamai, http://www.akamai.com, 2002.
[DataGrid02] The Data Grid Project, http://www.eu-datagrid.org,

2002.
[GriPhyN02] The GriPhyN Project, http://www.griphyn.org, 2002.
[LIGO02] The LIGO Experiment, http://www.ligo.caltech.edu/, 2002.
[Sandvine02] Peer-to-Peer File Sharing: The Effects of File Sharing

on a Service Provider's Network. 2002, Sandvine
Whitepaper.

[SDSS02] Sloan Digital Sky Survey, http://www.sdss.org, 2002.
[Speedera02] Speedera, http://www.speedera.com, 2002.
[AFN+01] Allcock, W., et al. High-Performance Remote Access to

Climate Simulation Data: A Challenge Problem for Data
Grid Technologies. in Supercomputing'01. 2001.

[BCM+02] Byers, J.W., et al. Informed Content Delivery Across
Overlay Networks. in Proceedings of ACM SIGCOMM'02.
2002.

[BLM02] Byers, J.W., M. Luby, and M. Mitzenmacher, A Digital
Fountain Approach to Asynchronous Reliable Multicast.
IEEE J-SAC, Special Issue on Network Support for
Multicast Communication, 2002. 20(8): p. 1528-1540.

[CP02] Crowcroft, J. and I. Pratt. Peer to Peer: peering into the
future. in Networks 2002. 2002.

[CFF+01] Czajkowski, K., et al. Grid Information Services for
Distributed Resource Sharing. in Tenth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-10). 2001. SanFrancisco, CA: IEEE Press.

[CFK99] Czajkowski, K., I. Foster, and C. Kesselman. Resource Co-
Allocation in Computational Grids. in Proceedings of the
Eigth IEEE International Symposium on High Performance
Distributed Computing (HPDC-8). 1999.

[FK98] Foster, I. and C. Kesselman. The Globus Project: A Status
Report. in IPPS/SPDP '98 Heterogeneous Computing
Workshop. 1998.

[Gkantsidis02] Gkantsidis, C. Parallel Download,
http://www.cc.gatech.edu/~gantsich/parallel_download.htm,
2002.

[HSS00] Hafeez, M., A. Samar, and H. Stockinger. Prototype for
Distributed Data Production in CMS. in 7th International
Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT2000). 2000.

[Holtman00] Holtman, K. Object Level Replication for Physics. in 4th
Annual Globus Retreat. 2000. Pittsburgh.

[HJS+00] Hoschek, W., et al. Data Management in an International
Grid Project. in 2000 Internationsl Workshop on Grid
Computing (GRID 2000). 2000. Bangalore, India.

[JCD+00] Johnson, K., et al. The Measured Performance of Content
Distribution Networks. in Proceedings of the 5th
International Web Caching and Content Delivery
Workshop. 2000. Lisbon, Portugal.

[KRR00] Kangasharju, J., K. Ross, and J.W. Roberts. Performance
Evaluation of Redirection Schemes in Content Distribution
Networks. in Proceedings of 4th Web Caching Workshop.
1999. San Diego.

[MMR+01] Malon, D., et al. Grid-enabled Data Access in the ATLAS
Athena Framework. in Computing and High Energy Physics
2001 (CHEP'01) Conference. 2001.

[MLB95] Malpani, R., J. Lorch, and D. Berge. Making World Wide
Web Caching Servers Cooperate. in Proceedings of the
Fourth International WWW Conference. 1995.

[Maxemchuk75] Maxemchuk, N.F. Dispersity Routing. in
Proceedings of the International Conference on
Communications. 1975.

[NM02] Newman, H. and R. Mount. The Particle Physics Data Grid,
www.cacr.caltech.edu/ppdg.

[PAD+02] Planck, J.S., et al., Algorithms for High Performance,
Wide-Area, Distributed File Downloads. 2002, University
of Tennessee, Department of Computer Science.

[Rabin89] Rabin, M.O., Efficient Dispersal of Information for
Security. Journal of the ACM, 1989. 38: p. 335-348.

[Rizzo97] Rizzo, L., Effective Erasure Codes for Reliable Computing.
Computer Communications Review, 1997.

[RKB00] Rodriguez, P., A. Kirpal, and W.E. Biersack. Parallel-
access for Mirror Sites in the Internet. in Proceedings of
IEEE INFOCOM. 2000.

[SGG02] Saroiu, S., P.K. Gummadi, and S. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. in Proceedings
of Multimedia Computing and Networking (MMCN'02).
2002.

[TF01] Tirumala, A. and J. Ferguson. Iperf 1.2 - The TCP/UDP
Bandwidth Measurement Tool,
http://dast.nlanr.net/Projects/Iperf. 2001.

[VSF02] Vazhkudai, S., J. Schopf, and I. Foster. Predicting the
Performance Wide-Area Data Transfers. in 16th
International Parallel and Distributed Processing
Symposium (IPDPS). 2002. Fort Lauderdale, Florida: IEEE
Press.

[VTF01] Vazhkudai, S., S. Tuecke, and I. Foster. Replica Selection in
the Globus Data Grid. in First IEEE/ACM International
Conference on Cluster Computing and the Grid (CCGRID
2001). 2001. Brisbane, Australia: IEEE Press.

[Wang99] Wang, J., A Survey of Web Caching Schemes for the
Internet. ACM Computer Communication Review, 1999.

[WPP02] Wang, L., V. Pai, and L. Peterson. The Effectiveness of
Request Redirection. in Proceedings of the 5th OSDI
Symposium. 2002.

[ZMF98] Zhang, L., S. Michel, and S. Floyd. Adaptive Web Caching:
Towards a New Global Caching Architecture. in
Proceedings of the Third International Caching Workshop.
1998.

http://www.akamai.com/
http://www.eu-datagrid.org/
http://www.griphyn.org/
http://www.ligo.caltech.edu/
http://www.sdss.org/
http://www.speedera.com/
http://www.cc.gatech.edu/~gantsich/parallel_download.htm
http://www.cacr.caltech.edu/ppdg
http://dast.nlanr.net/Projects/Iperf

