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Challenges In Hydrogen Production

• Major efforts are underway to produce hydrogen using nuclear 
reactors with thermochemical cycles
–Water + Heat ⇒ Hydrogen + Oxygen
–Sulfur-based thermochemical cycles are the leading options  

• Sulfur cycles require very high temperatures (850ºC)
–Massive R&D effort is required to reach these temperatures

• At limits of reactor technology
• At limits of practical materials

–Large incentives to reduce temperatures by 100 to 200°C



Thermochemical Cycles Convert Heat And 
Water Into Hydrogen and Oxygen
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Sulfur Family of Thermochemical Cycles
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The High-Temperature Step In Sulfur Cycles Is 
The Thermal Decomposition of Sulfuric Acid

H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2

• The second decomposition reaction (far right) requires high-
temperatures (850ºC)

• Lower temperature operation (e.g. 700ºC) results in limited 
dissociation of SO3 and low process efficiency via the 
following sequence of events:
– Unreacted H2SO4 and reaction products are cooled
– Components are separated
– Unreacted H2SO4 is reheated
– High internal recycle with high costs and lower efficiency



03-205

Concentration of SO2 Versus Temperature
(H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2)
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One Solution For Complete H2SO4 Dissociation

• Push the equilibrium high-temperature reaction to 
completion by removing the reaction products

H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2

• Membrane separation of O2, H2O, and SO2 from SO3 drives 
reaction to the right, thus allowing high conversion at lower 
reaction temperatures
Potential to reduce peak temperature to between 650 and 
750°C



Sulfur Oxide Decomposition System Design
(SO2, O2, and H2O Separation Allows Driving the Reaction to Completion)
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Inorganic Membrane Technology

Technologies Developed At 

Oak Ridge National Laboratory



Inorganic Membranes Have Been Developed for
Commercial Production

• 316L stainless steel filters
• Nickel on nickel HEPA-like filters (400-900 nm)
• Titania on alumina ultrafilter (60 nm)
• Inconel 600 filters (6300 nm)
• 310 stainless steel filters (6400 nm)
• 304L stainless steel filters (6500 nm)
• Hastelloy X filters (7100 nm)
• Nickel depth filter (500-5000 nm)
• Zirconia on stainless steel ultrafilter (40-70 nm; 40-150 

nm)
• Zirconia on Hastelloy ultrafilter (40-70 nm)
• Any 300 series stainless steel, Monel, Inconel, and 

Hastelloy filters (500-15000 nm)
• Titania filter (500-9000 nm)
• Others pending

Photograph of an industrial system based on 
Pall’s AccuSep™ inorganic membranes



Inorganic Membrane Fabrication Processes Are Versatile
(ORNL Technology)

• Choice of pore diameters from       
0.5 nm to 20,000 nm 

• Support structure and layer made of 
variety of metals and ceramics

• Mechanical, thermal, and chemical 
stability

• Membrane layer thickness of 2µm or 
less yielding a high permeance at 
low pressure drop

• Proven scalability



Separation Occurs at the Critical
Separation Layer

Critical membrane 
Layer

Pore Size: 0.4-5nm 
Thickness: 0.01-0.5 µm

Primary Layer
Pore Size: 0.005-0.5 µm
Thickness: 1-20 µm

Porous Support
Pore Size: 0.5-50 µm
Thickness: >400 µm

Zirconia 
membrane, 
0.1 µm pore 
diameter

316L support tube, 
42% void, 2 µ m 
pore diameter

10 µm 



Separation of Sulfur Species



Status of High-Temperature Inorganic 
Membrane Separation Technology

• Fabrication technology can make high-temperature 
membranes

• Experimental data and theory indicate performance of 
membranes improves with temperature
– Require nanopore membranes
– Performance based on thermally activated diffusion
– Experiments with He/SF6 and other systems

• No data on sulfur species separations
– Test loop under construction



Separation Factors Are Dependent on Temperature
Separation Factor: [Y/(1-Y)] [(1-X)/X]
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Permeance Increases With Temperature
(Gas Flow Through Membrane Per Unit Area)

0 50 100 150 200 250 300
Temperature C

0

0.001

0.002

0.003

0.004

P
er

m
ea

nc
e 

(s
cc

/m
in

/c
m

^2
/c

m
 H

g)
 a

t 0
 c

m
 H

g

1230252-8
Helium Permeance



Path Forward To Sulfur Species 
Inorganic Membrane Separation



Experimental Test Facility
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Experimental Apparatus (Under Construction)



Conclusions
• Inorganic high-temperature membranes may reduce peak 

temperatures of sulfur thermochemical cycles
• There is large-scale industrial experience in fabricating inorganic 

membranes
• Earlier experiments with other gas separations shows that  

membrane performance improves with temperature
• Theory indicates the potential for high-performance membranes for 

sulfur-species separations
• Test facilities now operational
• First experimental results by the end of 2003



Backup



Sulfur Family of Thermochemical Cycles
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Alternative Sulfur Oxide Decomposition System Design
(SO2, O2, and H2O Separation Allows Driving the Reaction to Completion)
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Separation Factors Increase with Temperature in Nanopores 
Because Gas Permeation Exhibits Thermally Activated Diffusion
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ORNL’s Industrial Partner, Pall Corporation, Offers 
Accusep Filters in Several Configurations



Permeance and Separation Factor are 
Critical Membrane Attributes

• Permeance is the volumetric flow per unit of time per unit of 
membrane surface area per unit of pressure difference 
between the feed stream and product stream

• Permeability is the product of permeance times membrane 
thickness

• Separation factor is the ratio of flow rate of gases in a binary
gas mixture and is indicative of the separation effectiveness 
of a membrane

• Larger values of permeance and separation factors are 
desirable



Path Forward

• Experimental apparatus under construction
• Theory used to select multiple membranes from 

stocks for testing
• Analysis of experimental results used to define 

preferred properties for sulfur species separations
• Optimized membrane fabricated
• Test optimized membrane
• Repeat process


