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Topics to bewtouched “a

e[Peelle’s Pertinent Puzzle/Paradox

e Implicit data covariance (IDC) methodology

e Transformation of variables
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What Is an appropriate goal of data analysis?

e If we make the (rash) assumption that the measured
quantities! (the raw data) obey Gaussian statistics, then
fitting to the measured quantities should give the correct
result (“Truth”).

e The goal of an analysis which fits to derived quantities? is
then to obtain the same value of “Truth” (or as close to it as
possible) .

In a time-of-flight (tof) measurement this might be counts per time channel.

2Cross section per energy, in a tof measurement.
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References for PPP

e Zhao and Perey

— “The Covariance Matrix of Derived Quantities
and Their Combination”

— ORNL/TM-12106 (1992)

e Chiba and Smith

— “Some comments on Peelle’s Pertinent Puzzle”
— JAERI-M 94-068 page 5-12 (1994)
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Solution to PPP ?

e Least-squares equations™ are a linear
expansion of a non-linear problem

— Everywhere throughout the equations, the
expansion must be made with respect to the
same estimate of the value of any given
parameter

— Data covariance matrix is generally derived
assuming different estimates for the same

parameter mm) ¢am

* or Bayes’ Equations
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A trivial example

e Suppose the function Y is given by the product of
two other (nonlinear) functions, fand g

Y(x) = f(x) g(x)

e Suppose further that, when f was measured, the
value of x was known to be approximately a.
Therefore, for x = a, f can be expanded in a Taylor
series to give

f(x) = f(a) + 1, (x-a)
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A trivial example, cont. (Y =1fQg)

e Suppose also that, when g was measured, the value of x
was known to be =b. Hence, for x close to b, g can be
expanded as

g(x) = g(b) + g,(x-b)
e Therefore Y might be written

Y(x) = f(x) g(x) = [f(a) *+ f,(x-a) ] [9(b) *+ g, (x-b) ]

e Where is this equation valid?
— Forx=a?
— Forx=b? No where! unlessa=Db
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How does this apply to PPP ?

o Let d,and d,represent two (uncorrelated)
measurements of the same quantity, with
uncertainties Ad, and Ad, respectively.

e Let n represent the normalization (identical
for the two measurements), and An its
uncertainty.

o Let P represent the parameter of interest; P is
related to the measured quantity via P = d/n .
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PPP, continued

e To fit to the raw data, one way to formulate Bayes’
Equations is

il oD e Mt T2
mels <0 : nP-d,

where the partial derivative matrix G and data
covariance matrix V are given by

{n p} Nd, 0
G: V:
n P 0 Ad,
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PPP, continued (fit raw data)

The (final) parameter covariance matrix M’ is found from
M'= (M ™ +W)~
with W definedby W =G'V G

and the (initial) parameter covariance matrix M by

AP 0| [ O
M: =
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[P'}z[P}—M'Y Me=Ca/ F Hegd R U G= i V= i,
n'| |n nP-d, 0 A n P 0 Ad,
Gtvl—{n n} i< R B Aol i Al

P ™ O AR i AR AR T R AR

Y—G‘V{np_dl}— nA%d, nA”d, _nP—dl}_ n’P (A%d, +A?d,) —n(d,A?d, +d,A*d,) _{n(nPQ—R)}
nP-d,| |PA2d, PA?Z, | nP-d,| |nP?(A2d,+A%d,)—P(d,A%d, +d,A?d,)| |P(PQ-R)

nP (A%d, +A%d,) P?>(A?d,+A7%d,)

W=GV'G ={

A bl AVA 0 {n Pl |n®(A”d,+A7d,)  nP(Ad,+Ad,)
REAVd, PIARH ||

W n? (A%d, + A%d,) nP (A%d, + A%d,) 5 n’Q nPQ
NP (A2d,+A%d,) P2(A%,+A%d,)+A%n| |nPQ P?Q+A?n Q=A"d, +Ad,
R=d,A?%d, +d,A™d,
P? , 1 RS
— LAl AT
L |P’Q+A°n —nP 2 2
MI:(M -1 +W)—1 :(nZQ A—Zn)1|: Q+ n zn Q:|: n n Q n
QL% 1K Mo A’n
n
PI' | —(nZQ A*Zn)*l P’Q+A”’n -nPQ |[n(nPQ -R) !
n n —-nPQ n’Q | P(nPQ-R)

(an A’Zn)fl n’PQ A”*n—nP*Q(nPQ - R) —nA™n(nPQ - R) + nP*Q(nPQ - R) | {R/(nZQ)}
n*Q A2n +n2PQ(NPQ — R) — n2PQ(nPQ - R) il
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PPP, continued (fit raw data)

o After a bit of algebra, results are

dy g,
AT, A
1 1 (as expected)
n +
A°d,  Ad,

and
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PPP, continued (fit raw data) m

e New parameter covariance matrix is

-1
1 1 1 P* P
nz[AZd +A2dj ARt
MI - 1 2 \.\
_P pn S UAPN
] n T

e Note that the updated parameter value P’ does no\t'depend
on starting value P, but uncertainty does depend on|P}

Therefore we would iterate, and the result would be to write AP’ in terms of P’ rather than P

e (Both value and uncertainty depend upon n.)
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Results for fitting to raw data -

d, __d,
A'd,  A%d,

(e “Truth”

_|_
ALES AR,
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PPP, continued

e So much for fitting to raw data

e Usually we must fit to reduced data
— So how do the equations change ?
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PPP, continued

o To fit to the reduced data, set D; =d./n .

e Bayes’ Equations then take the form

[P'|=[P]-M'G'V™

where the usual expressions for Vand G are

EXZ'&? dan  [dd, An|] i statistical :

L 5 o P~ M et Sl
Ly 2 2 2 2
v i 0t Ln® i n1
dd, &An A d,” A°n :
Ik ‘n2: [n? n?l| |Systematic

(common)
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PPP, continued (fit reduced data, usual method)

The (final) parameter covariance matrix M’ is found from

M'=(M™"+W)~
with Wdefinedby W =G'V'G

and the (initial) parameter covariance matrix M by

M =|AP|=[0] so M™=[0]
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[P']:[P]_M'Y Y _Gly [P—dlln} G:[]} V:{a2+x2q Xyq :I ot a’ = Ad, I n?

P—dzln 1 Xyq b2+y2q X:dlln
e b? = A%, In?
GVi=[t 1{ T z_xyzq}zz (b2 +y2q-xya) (2% +x*q-xya)lz  Z=(a%h?+(a%y? +b?x*)q)” =
—xyq a’+x%q

P_ P(a? +b? 2 _o 2
n}zz[b“yzq—xyq a2+x2q+xyq]{ X}zz{ At R - 20 TRIH)

P-y] L.=x(*+(y* —xy)a) - y@* + (x* - xy)q)

W =GV G =[a? +b% + (x-y)?qfz

X2 2
L kb2 (a4 Bodlg 1+[az b? ]q
M':W’lz[a2+b2+(x—y)2q] 7t = — = -

a“+b°+(x-y)q i+1+(x—y)

a_2 b2 a2b2

P=P-M'Y=P—{a®+b%+ (x> =2xy+y2)g} ' Z'Z{P(@® +b® + (x* —2xy + y*)q) — x(b® + (y* — xy)q) — y(a* + (x* — xy)q)}
—{a? +b2+(x®*—2xy+y2)q¥* (P{[a®+b? +(x* - 2xy + y?)q]-[a® +b? + (x® —2xy + y*)q]}
+xb? + ya? + xq{y? - x2y + x2y — xy’})
={a’+b*> +(x* =2xy+y*)g}*' (x/a*+y/b*a’h?
={A’d, + A’d, + (d, —d,)?A’n/n?}" (d,/ A’d, +d, / A’d,)A’d,A%d, /n
—{Q +(d, —d,)?An/(n?A%d,A%d,)}* R/n Q=470 + A%,
R=d,A?d, +d,A™d,
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PPP, continued (fit reduced data, usual method)

o After doing all the algebra, we find the result for P’ & A2P’
dl b d2
A*d,  Ad,
2
n 1 I 1 b n(dz_d1) Azn
A’d, A, A*d, A°d,
5t 2 2 =
12 21 K 21 J 14 dzl + dzz 21 + 21 AN
PSS Ge ESAS e SN o ARG, P A0

(S0 ~ A%
ARdMASHE Findl e A dE e R
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PPP, continued (fit reduced data, usual method)

e Reproduce PPP’s original numbers?
— Set d,=1.5,Ad, =0.15,d, =1.0, Ad, = 0.1, n=1.0, An = 0.2

{0.152+1.520.22 (1.5)(1.0)0.22} {0.1125 0.06}

(15)(1.0)0.2>  0.10*+1.0°0.2* | [0.06  0.05
158 5170
0.157 * 0.10° 15
P& : - AT = — =0.8823529...
1.0( ~+ 2)+ C — ')20.202
0155 0M0 0.15°0.10

o TR S W L 1 O 2
2 2 2 2 4 4 2 o 2 2 i 2
1.02(0.15%*  0.10 1.0 0.15*  0.10%° \ 0.15> 0.10
(de5==0u0)t (¥ I A=y 22 X S
1 i : 2_ ; 2 ( 2 v 2) : 2
0.1520.10% \ 0.15> 0.10%) 1.0
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PPP, continued (fit reduced data, usual method)

e Result for P’ is the same result as in the fit-to-raw-
data case only if d, — d, or A’n — 0.

d, , g,
_|_
(Azd A*d j

n \(d* d n
Azd Azd
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PPP, continued (fit reduced data, usual method)

Result for M’ (AP’)? is equal to Truth only in the limit
as d, — d, or An — 0...

1 0 T T, Y el g, - o T Tl )
2 2 5 2 an 4 2 i 2 2 & 2 An
n2| A2, A%, n*| A2, " A%, | A%d, A%,
o (dz—dl)z( 15 1 }1A2n
AsATd A ST T
_a+b

=——=a+(b-ac)
1+cC

AZPI

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE
22




[Xz 2
Tt 2+2jq
M'= s — what? M A2l NS G ey
T L0 (=Y ) 1+H
R L e e |
a“ b a‘h
! oy _(x=y)?
E= T W G_[?er_quF e 7 qF
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S GoFH =R s Y OO AT e (a7 b2 4 yPad(al +b?) - (x— y)Pah?)
a4 e’ iR ak + h? (

1

AR )t 2 Vel . e
) 4 }(a2 +b?)a’h?

= Fqix*(a’b® +b* —a’bh?) + y*(a“ +a’b* —

1

2 12

XY P

e =_An
{az b? } : n?

Fq{xzb4 +y?a* + 2xya’b? }

X
o)

a’b®
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PPP, continued (fit reduced data, usual method)

In the limit...
-1 2 -2
AZPI = 12 21 "y 21 i 14 (2:jl 3 (32 21 n 21 Azn
n“\ A°d, A°d, R Al S R EAS Q n A,

-3 12
T 12 21 4 21 it 'Pz A'n
n“\ A°d; A°d, n
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PPP, continued (fit reduced data)

e So what’s causing the problem? It’s in the definition of V —

Comes from linear expansion
valid only near D =d,/n

Comes from linear expansion
valid only near D = d,/n
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PPP, continued (fit reduced data)

e Solution? Expand around D = P.

N4 e
V — n’ n’ n’
|15 1A%n Ad AN
| R

e In this case, results for P’ and AP’ are the same in the
fit-to-raw-data case as in the fit-to-reduced-data
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b2 P2 _P2 5 y:dz/n
evi=p1" " TT I zo 2 a?  z=(a%?+(a® +b?)P%g)"
-P?g a’+P?%q
P-d,/n B=
Y=Gtv{P dlln}zz[b2 az]{P ﬂ:z[P(a%bz)—xbz—yaz]
=) -
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Results for fitting to reduced data with
the correct data covariance matrix-

d d, 15 1.0
o e Iy
Ad, Ad,) (0.15% 0.10° 15

] Wi 53816
n 1 ot 1 1.0( 5 s 2]
A’d, Ad, ONIGERE. 10

_ 0.2)* =(0.245311057...)
110 156 %3 1" 5° 1@ w2 )

1( P v j+(£j2
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Practical application?

e Years ago | added capability to use “implicit
data covariance matrix” in SAMMY
— First, using wrong V (the one derived from data D)
e Runs kept misbehaving, numerical problems etc.

— So switched from using D (measured data) in
generating V, to using T (theoretical values)

e Numerical problems disappeared.

o | got it right by accident!
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Observation and Question
concerning this example

e Observation

— When fitting reduced data, if systematic
uncertainties are completely ignored, then

e Parameter value P’ is correct

e Uncertainty AP’ can be found by adding
systematic uncertainty in quadrature

e Question
— Can this be generalized?

e Multivariate?
e Non-linear?

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

UT-BATTELLE
30




0&0Q

e My expectation is “Not easily”

— Example: R-matrix analysis of fission cross
section with obviously-wrong background
produces obviously-wrong resonance
parameters ...
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241Am fission cross section

cross = “experiment”

dash = calculation from initial , , ,
parameters 7

solid = calculation from fitted ]
parameters using only .:

statistical errors
G0

SO
40
30
20

10
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(end of PPP
discussion)
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Topics to bewtouched “a

e Peelle’s Pertinent Puzzle/Paradox

o/Implicit data covariance (IDC) methodology

e Transformation of variables
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Implicit Data Covariance Method

Complete data covariance matrix is
V=v+XQX!

where

e Vis the data covariance

e v represents the statistical uncertainties

e X is the sensitivity matrix (partial derivative of data with

respect to data-reduction parameters) [evaluated at current
values of fitting parameters to avoid PPP-type difficulties]

e Q is the covariance matrix for the data-reduction
parameters
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(what are these data reduction parameters? )

e used for describing experimental conditions
— normalization, background
— burst width
— isotopic abundance
— etc.

e can be used in two ways
—|used to generate data covariance matrix

— included as varied parameters in fitting procedure
e mathematically equivalent to using data-covariance matrix
e numerically more stable
e bonus: values of data-reduction parameters are updated
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Data Covariance Matrix, symbolically

where

e size of box may be considered to be logarithmic
— large ~ thousands (or 10 K or 100 K)
— small ~ very few (57 10?)

e dashed box with diagonal line indicates diagonal matrix
e solid box indicates non-diagonal matrix
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Inverse of Data Covariance Matrix, symbolically

V- = (v+ X Q Xt)
— V-1_ V-1X(Q-1 +XtV-1X)-1XtV-1
=PV SRR W R ZAN WX R
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Quantities needed In Bayes’ equations: W
W= GtV-1G
= GivIG - Gtv1X Z1Xtv-1G

Another dimension: number
! of theory parameters

1
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Quantities needed In Bayes’ equations:. Y

Y= Gt!VI(D-T)
=GivIi(D-T) -GivIX ZT1Xtv-(D-T)

This dimension = 1
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Why bother with all these arrays?

Matrices in W and Y are easier to invert than V —

e v is large but diagonal
— (size ~ thousands of data points)

e Qis|small

and often diagonal
— (size ~ tens of data-reduction parameters)

o Zis off-diagonal but/small
— (size ~ tens)

— which leads to savings in
e computation|time|(never calculate V or V1)

e computer

memory| (never store V or V1)

e humerical
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In SAMMY, implicit data covariance (IDC)
matrices can be used for

e hormalization

e background correction factors

e user-supplied implicit data covariance | new
— external code can be used to generate pieces (X and Q)
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Example from SAMMY Test Case tr140:
129] transmission data

Geel data

provided f
by Gilles e .
Noguere, X A
Cadarache $:7)

Transmission

Energy (eV)
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Example, continued

1245 experimental data points;
[full data set has 32660 data points]

9 data-reduction parameters;
655 resonances; 9 varied parameters

Description of data Cpu time for Total cpu
covariance treatment Bayes solver time Array
for this run (sec) (sec) size
a only statistical errors 0.03 14 254 K
b statistical plus systematic, 0.03 14 254 K
only on diagonal
c explicit data cov matrix 16.46 59 1800 K
IDC matrix 0.06 14 267 K

Note: ¢ & d give essentially the same results
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For more on covariance matrices and IDC —

“Practical Alternatives to Explicitly Generating
and Inverting Data Covariance Matrices”

N. M. Larson

Nuclear Mathematical and Computational Sciences:
A Century in Review, A Century Anew

Gatlinburg, Tennessee, April 6-11, 2003

On CD-ROM
American Nuclear Society, LaGrange Park, IL (2003)
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Suppose we want to make use of uncertainties
for non-varied parameters ?

(e.g., resolution-function parameters)

Add a third option for parameter flag in SAMMY:

e 0=do notA\lary/ current SAMMY options
e 1 =vary

e 3 = calculate partial derivatives, propagate uncertainties
— to be treated in similar fashion to IDC

to be implemented soon (end Of |DC
discussion)
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Topics to bewtouched “a

e Peelle’s Pertinent Puzzle/Paradox

e Implicit data covariance (IDC) methodology

e Transformation of variables
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Transformation of variables

o Least-squares equations (and/or Bayes’ equations) are based
on the implicit assumption that the parameters obey
Gaussian statistics.

e Transformation (via log, or sqrt, or whatever) Will introduce a
new variable which obeys another statistic.

e Results obtained with the new variable will therefore be
different from results obtained with the original.

e Which result is “correct” depends at least in part on
which variable obeys the appropriate (Gaussian)
statistic.
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Transformation of variables

o Least-squares equations (and/or Bayes’ equations) are based
on the implicit assumption that the parameters obey
Gaussian statistics.

e Transformation (via log, or sqrt, or whatever) Will introduce a
new variable which obeys another statistic.

e Results obtained with the new variable will therefore be
different from results obtained with the original.

e Which result is “correct” depends at least in part on
which variable obeys the appropriate (Gaussian)
statistic.
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The End
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