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Topics to be covered

•Peelle’s Pertinent Puzzle/Paradox

• Implicit data covariance (IDC) methodology

• Transformation of variables

touched on
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What is an appropriate goal of data analysis?

• If we make the (rash) assumption that the measured 
quantities1 (the raw data) obey Gaussian statistics, then 
fitting to the measured quantities should give the correct 
result (“Truth”).

• The goal of an analysis which fits to derived quantities2 is 
then to obtain the same value of “Truth” (or as close to it as 
possible) .

1In a time-of-flight (tof) measurement this might be counts per time channel.
2Cross section per energy, in a tof measurement.
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References for PPP

• Zhao and Perey
− “The Covariance Matrix of Derived Quantities 

and Their Combination”
− ORNL/TM-12106 (1992)

•Chiba and Smith 
− “Some comments on Peelle’s Pertinent Puzzle”
− JAERI-M 94-068 page 5-12 (1994)
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Solution to PPP ?

• Least-squares equations* are a linear 
expansion of a non-linear problem
− Everywhere throughout the equations, the 

expansion must be made with respect to the 
same estimate of the value of any given 
parameter

− Data covariance matrix is generally derived 
assuming different estimates for the same 
parameter

* or Bayes’ Equations
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A trivial example

• Suppose the function Y is given by the product of 
two other (nonlinear) functions, f and g

Y(x) = f(x) g(x)

• Suppose further that, when f was measured, the 
value of x was known to be approximately a.  
Therefore, for x ≈ a, f can be expanded in a Taylor 
series to give

f(x) ≈ f(a) + fx (x-a)
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A trivial example, cont.  ( Y = f g )

• Suppose also that, when g was measured, the value of x
was known to be ≈b.  Hence, for x close to b, g can be 
expanded as

g(x) ≈ g(b) + gx(x-b)

• Therefore Y might be written

Y(x) = f(x) g(x) ≈ [f(a) + fx(x-a) ] [g(b) + gx (x-b) ]

•Where is this equation valid?
− For x ≈ a ?  
− For x ≈ b ? No where!  unless a ≈ b
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How does this apply to PPP ?

• Let d1 and d2 represent two (uncorrelated) 
measurements of the same quantity, with 
uncertainties ∆d1 and ∆d2 respectively.

• Let n represent the normalization (identical 
for the two measurements), and ∆n its 
uncertainty.

• Let P represent the parameter of interest; P is 
related to the measured quantity via P = d/n .
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PPP, continued

• To fit to the raw data, one way to formulate Bayes’
Equations is

where the partial derivative matrix G and data 
covariance matrix V are given by
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PPP, continued (fit raw data)

The (final) parameter covariance matrix M’ is found from

with W defined by

and the (initial) parameter covariance matrix M by
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PPP, continued (fit raw data)

• After a bit of algebra, results are

(as expected)

and
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PPP, continued (fit raw data)

• New parameter covariance matrix is

• Note that the updated parameter value P’ does not depend 
on starting value P, but uncertainty does depend on P. 

Therefore we would iterate, and the result would be to write ∆P’ in terms of P’ rather than P

• (Both value and uncertainty depend upon n.)
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Results for fitting to raw data –
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PPP, continued

•So much for fitting to raw data

•Usually we must fit to reduced data
− So how do the equations change ?
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PPP, continued

• To fit to the reduced data, set Di = di /n .

• Bayes’ Equations then take the form 

where the usual expressions for V and G are
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PPP, continued (fit reduced data, usual method)

The (final) parameter covariance matrix M’ is found from

with W defined by

and the (initial) parameter covariance matrix M by
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PPP, continued (fit reduced data, usual method)

• After doing all the algebra, we find the result for P’ & ∆2P’ 
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PPP, continued (fit reduced data, usual method)
• Reproduce PPP’s original numbers?

− Set  d1 = 1.5, ∆d1 = 0.15, d2 = 1.0, ∆d2 = 0.1, n = 1.0, ∆n = 0.2 
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PPP, continued (fit reduced data, usual method)

• Result for P’ is the same result as in the fit-to-raw-
data case only if d2 → d1 or ∆2n → 0.
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PPP, continued (fit reduced data, usual method)

Result for M’ (∆P’)2 is equal to Truth only in the limit 
as d2 → d1 or ∆2n → 0…
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PPP, continued (fit reduced data, usual method)

In the limit…
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PPP, continued (fit reduced data)

• So what’s causing the problem?  It’s in the definition of V –
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PPP, continued (fit reduced data)

• Solution?  Expand around D = P.

• In this case, results for P’ and ∆P’ are the same in the 
fit-to-raw-data case as in the fit-to-reduced-data
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Results for fitting to reduced data with 
the correct data covariance matrix–
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Practical application?

•Years ago I added capability to use “implicit 
data covariance matrix” in SAMMY
− First, using wrong V (the one derived from data D)

• Runs kept misbehaving, numerical problems etc.

− So switched from using D (measured data) in 
generating V, to using T (theoretical values)
• Numerical problems disappeared.

• I got it right by accident!
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Observation and Question 
concerning this example

•Observation
− When fitting reduced data, if systematic 

uncertainties are completely ignored, then
• Parameter value P’ is correct
• Uncertainty ∆P’ can be found by adding 

systematic uncertainty in quadrature

•Question
− Can this be generalized?

• Multivariate?
• Non-linear?
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O&Q

•My expectation is “Not easily”

− Example:  R-matrix analysis of fission cross 
section with obviously-wrong background 
produces obviously-wrong resonance 
parameters …



32

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

241Am fission cross section
cross = “experiment”
dash  = calculation from initial 

parameters
solid  = calculation from fitted 

parameters using only 
statistical errors
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(end of PPP 
discussion)
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Topics to be covered

•Peelle’s Pertinent Puzzle/Paradox

• Implicit data covariance (IDC) methodology

• Transformation of variables

touched on
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Implicit Data Covariance Method
Complete data covariance matrix is

V = v + X Q X t

where

• V is the data covariance

• v represents the statistical uncertainties

• X is the sensitivity matrix (partial derivative of data with 
respect to data-reduction parameters) [evaluated at current 
values of fitting parameters to avoid PPP-type difficulties]

• Q is the covariance matrix for the data-reduction 
parameters
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(what are these data reduction parameters? )

• used for describing experimental conditions
− normalization, background
− burst width
− isotopic abundance
− etc.

• can be used in two ways
− used to generate data covariance matrix
− included as varied parameters in fitting procedure

• mathematically equivalent to using data-covariance matrix
• numerically more stable
• bonus: values of data-reduction parameters are updated
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Data Covariance Matrix, symbolically

V   =     v     +   X   Q   X t

where 

• size of box may be considered to be logarithmic
− large ~ thousands (or 10 K or 100 K)
− small ~ very few (5? 10?)

• dashed box with diagonal line indicates diagonal matrix

• solid box indicates non-diagonal matrix

= +
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Inverse of Data Covariance Matrix, symbolically

V -1 =   (v +  X  Q  X t  ) -1

=  v -1 - v -1 X ( Q -1 + X t v -1 X ) -1 X t v -1
=     v -1 - v -1  X   Z -1 X t       v -1

where
Z = Q -1 +   X t v -1 X

=

+

-

=
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Quantities needed in Bayes’ equations:  W

W  =   G t V -1 G

=   G t v -1 G  - G t v -1 X  Z-1 X t v -1G

=

-

Another dimension: number 
of theory parameters
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Quantities needed in Bayes’ equations:  Y

Y  =   G t V -1 (D – T )

=  G t v -1 (D – T ) - G t v -1 X  Z-1 X t v -1(D – T )

=

-

This dimension = 1
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Why bother with all these arrays?
Matrices in W and Y are easier to invert than V –
• v is large but diagonal

− (size ~ thousands of data points)
• Q is small and often diagonal 

− (size ~ tens of data-reduction parameters)
• Z is off-diagonal but small 

− (size ~ tens)

– which leads to savings in
• computation time (never calculate V or V-1 )
• computer memory (never store V or V-1 )
• numerical accuracy and stability (fewer round-off problems)
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In SAMMY, implicit data covariance (IDC) 
matrices can be used for

• normalization 

• background correction factors

• user-supplied implicit data covariance
− external code can be used to generate pieces (X and Q)

new
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Example from SAMMY Test Case tr140:   
129I transmission data

Geel data 
provided 
by Gilles 
Noguere, 

Cadarache
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Example, continued
1245 experimental data points;

[full data set has 32660 data points]

9 data-reduction parameters;
655 resonances; 9 varied parameters

267 K140.06IDC matrixd
1800 K5916.46explicit data cov matrixc

254 K140.03statistical plus systematic, 
only on diagonal

b
254 K140.03only statistical errorsa

Array 
size

Total cpu
time
(sec)

Cpu time for 
Bayes solver 

(sec)

Description of data 
covariance treatment 
for this run

Note:  c & d give essentially the same results
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For more on covariance matrices and IDC –

“Practical Alternatives to Explicitly Generating 
and Inverting Data Covariance Matrices”

N. M. Larson

Nuclear Mathematical and Computational Sciences: 
A Century in Review, A Century Anew

Gatlinburg, Tennessee, April 6-11, 2003

On CD-ROM
American Nuclear Society, LaGrange Park, IL (2003)
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Suppose we want to make use of uncertainties 
for non-varied parameters ?
(e.g., resolution-function parameters)

Add a third option for parameter flag in SAMMY:
• 0 = do not vary

• 1 = vary

• 3 = calculate partial derivatives, propagate uncertainties
− to be treated in similar fashion to IDC

current SAMMY options

to be implemented soon (end of IDC 
discussion)
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Topics to be covered

•Peelle’s Pertinent Puzzle/Paradox

• Implicit data covariance (IDC) methodology

• Transformation of variables

touched on
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Transformation of variables

• Least-squares equations (and/or Bayes’ equations) are based 
on the implicit assumption that the parameters obey 
Gaussian statistics.

• Transformation (via log, or sqrt, or whatever) will introduce a 
new variable which obeys another statistic.

• Results obtained with the new variable will therefore be 
different from results obtained with the original.

• Which result is “correct” depends at least in part on 
which variable obeys the appropriate (Gaussian) 
statistic.



49

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Transformation of variables

• Least-squares equations (and/or Bayes’ equations) are based 
on the implicit assumption that the parameters obey 
Gaussian statistics.

• Transformation (via log, or sqrt, or whatever) will introduce a 
new variable which obeys another statistic.

• Results obtained with the new variable will therefore be 
different from results obtained with the original.

• Which result is “correct” depends at least in part on 
which variable obeys the appropriate (Gaussian) 
statistic.

THE END
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The End


