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Hydrogen Futures

Currently Under Construction



Massive Quantities of Hydrogen Are Used Today
Worldwide Production: 50 Million Tons/Year
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Example: Canadian Tar Sands
Bitumen plus hydrogen yields crude oil
Investment next 10 years: $37 Billion
Oil and Gas Journal: July 28, 2003



Syncrude Canada Ltd. 
Tar Sands Operations 

(Tar Sands Exceed World’s Conventional Oil Resources)



Growing H2 Demand Creates a Bridge to the H2 Economy
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Nuclear Energy

Matches Requirements
No Greenhouse Gases



Nuclear Reactor Sizes Match H2 Production
(Hydrogen Currently Made By Steam Reforming Natural Gas)
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Thermochemical Processes Use Nuclear High-
Temperature Heat and Water to Produce H2
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Thermochemical Hydrogen Facilities May Require 
Physical Separation From the Nuclear Reactor

Nuclear Safety
by Isolation

Hydrogen Safety by Dilution

Loop Heat Transfer Comparison 
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Two Nuclear Reactor Options Can Produce the 
Required High-Temperature Heat
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Coated-Particle 
Graphite-Matrix Fuel

• Coated-Particle Fuel
• High-Pressure 

Helium Coolant
• Size: 600 MW(t) 
• Small Pilot Plants

• Coated-Particle Fuel
• Atmospheric-Pressure 

Molten Salt Coolant
• Size: To 2400 MW(t)
• New Concept
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Reactor Options Limited by Fuel: Only One Type 
of Demonstrated High-Temperature Fuel
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Only Two Coolants Are Compatible 
With High-Temperature Fuel

Helium Molten Fluoride Salts



Separations

(Thermochemical Cycles In A Few Decades May 
Contain The Largest Separations Processes)

Improved Separations Can Greatly 
Improve Thermochemical Cycles

Example: Sulfur Cycles



A Major Challenge With Sulfur Thermochemical Cycles Is 
The High-Temperature Sulfuric Acid Decomposition Step
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Driving The High-Temperature Reaction To 
Completion Requires High Very Temperatures 

(H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2)
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One Solution Uses Separations

• Push equilibrium high-temperature reaction to 
completion by removing reaction products

H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2

• Membrane separation of O2, H2O, and SO2
from SO3 drives reaction to the right allowing 
high conversion at lower reaction 
temperatures

Potential to reduce peak temperature to 
between 650 and 750°C



Conceptual System For Idealized Sulfur Thermochemical 
Inorganic Membrane Chemical Reactor
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Inorganic Membranes For 
Thermochemical Sulfur Cycles



Conclusions

• The hydrogen economy is coming
− It is under construction at your local refinery
− It will expand out with time

• Nuclear energy is a major hydrogen 
generation option

• Separations is a critical issue for all 
hydrogen production technologies


