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Outline

e (Coherent beam coupling

— Incoherent beam addition and coherent beam coupling

— Synchronization of multiple lasers for coherent coupling
« Experiments on synchronization of broad-area

semiconductor lasers

— Spectral/spatial properties

— Coherence of injection-locked lasers

— Temporal dynamics

— Amplification of injection signal

« Nonmonotonicity and transient behavior in coupled lasers
e Concluding remarks
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Synchronization
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Coherent Beam Coupling of Laser Array

Laser array

IIlCOheI'ent Coupling a«— On-axis intensity I ~N

N incoherent laser sources

On-axis intensity I ~ N2

N coherent laser sources

Applications:

Space Communications, Material Processing, Directed Energy
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Our Research: Synchronization of laser
array for coherent beam coupling

Conditions for coherent beam coupling
—Frequency locking

—Phase locking

Laser array synchronization
—Scalability to high power
—Maintaining high coherence and high beam quality
—Cost effective

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY UT-BATTELLE




Broad-Area Semiconductor Laser Array
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Experiments on Broad-Area Lasers

Single Broad-Area Laser Diode aperture < 100 um x1 pum, power: <1 W
Laser Array overall array aperture < 100 um x1 um

total output power < 1.2W

Our Objective
Synchronization and coherent coupling of a broad-area laser array

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY UT-BATTELLE




Experimental Setup of Injection Locking
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» Separate Injection Access to each Laser
« Ability to Split and Control Injection
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Wavelength Span of all 19 Lasers
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@ : injection locking frequency around the driving current I ,~1.5 L,
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Frequency Matching for Injection Locking

Free-running state Injection-locked state®
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Condition for Injection Locking

 Matching Between the Injection and Slave Laser Frequencies
» Less than 5 mW of Injection Power !
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Narrow Line Width of Injection-Locked Lasers
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Spectrum Bandwidth of the Order of 10 MHz
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Injection Locking Range
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* Stable Locking Range
e At Low Drive Current, the Frequency Range for
Stable Locking is Linear with the Injection Strength
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Far-Field Pattern at Injection-Locking
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Far-field angle after injection locking: 0.4° (close to the diffraction
limit from a 125-mm-wide emitting region
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Simultaneous Injection Locking of Two Lasers
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* Equally Split Injection Power into Two Lasers
e Control the Strength of Injection
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Interference Between Injection-Locked Lasers

Before Injection Locking After Injection Locking

Stable Phase Relationship Between Lasers
Locking of Spatial Modes

Y. Liu, H. K. Liu, and Y. Braiman, Applied Optics LP 41 (2002)
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Parameter Dependence
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Sensitive dependence of simultaneous injection locking on
frequency matching
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Temporal Dynamics
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Spatial-Temporal Dynamics
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Experimental Setup of Measuring Temporal
Waveform of Different Spatial Modes
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Optical Spectrum Far-Field Pattern
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Temporal Dynamics of Different Spatial Modes
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Experiment 1

Self-injection Locking of Coupled Individual Broad-Area
Lasers



Self-Injection Locking of Four Coupled Lasers
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Self-Injection Locking of Four Coupled Lasers
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Spectra of Individual Broad-Area Laser Without Coupling
and Spectrum of Total Output from Four Coupled Lasers
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Experiment 11
Self-injection Locking of Integrated Broad-Area Laser Array



Experimental Scheme
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Optical Spectrum (Free-Running)
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Optical Spectrum (Frequency Locked)
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Far-Field Pattern of Broad Area Array
(19 High Power Lasers)
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Experiment 111

Self-injection Locking of Nanosecond Pulsed Broad-Area
Laser



Nanosecond Broad-Area Laser Self-injection Locking

(Experimental Scheme)
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Frequency-Locking of a Pulsed Laser

Optical spectrum (LD#38918, pulsed, 10kHz, 6ns)
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Phase Model of Two Coupled Lasers

¢51 =0, + Kk (sin(¢;, — ¢,)) — 4, sin ¢,

¢.2 =0, + k(sin(¢, —¢,)) — A,s1n ¢,

Fixed Point Solutions
o1 + k(sin(¢ — ¢, )) — 4, singy =0

0y + K(sin(p, —¢y)) — A, sing, =0
Injection Tuning

5, +6,~0
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Analysis of the Phase Model

sin¢1 + sin¢2 =0
51 — 52 + 2K(sin(¢2 — ¢1 ))— Ae(sin ¢2 —sin ¢1) =0
The first equation implies that either (a) ¢, - ¢, = 2m+1)m,

or (b) ¢, + ¢, = 2mm, where m is an integer. Solutions of
class (a) imply: sin(9, - ¢,) = 0, yielding inconsistency.
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Nonmonotonicity Transition Point
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Nonmonotonicity
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Comparison of the Analysis with
Numerical Simulations
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Optimal Control of the Transient Behavior
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Summary

* Synchronization and coherent beam coupling of high-power laser
array (19 lasers) - high coherence, better directionality, high
intensity.

 Experimental setup of synchronizing high-power broad-area
semiconductor lasers via injection locking

— Conditions for injection locking of broad-area lasers.

— Simultaneous injection of two broad-area lasers in a 19-laser array.
 Experimental investigations and results

— Temporal dynamics of the injection-locked laser

— Amplification of the injection light

— Phase coherence between injection-locked lasers.

Challenges Future work
Array inhomogeneity Separate control of individual laser
Limited injection power Cascaded injection scheme
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