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! Outline

= Motivation

= Modeling of random fiber composite
microstructure

= Model for material failure
= Experiment
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Drop Tower Test of CSM Tube

CSM: Continuous Strand Mat
Swirled Glass Fibers, similar results to glass RFC
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Constitutive Modeling of Composite Materials

for Impact Analysis
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Developed constitutive models are
capable of modellng progressive

crushing of glass fiber composites.

The models were verltled agalnst
statlc and dynamlc experiments.
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Disspated energy Is proportional
to the area below the force trace.

The stable crushing of composlite
structures can provide adequate
energy dissipation for structural
crashworthiness while reducing
welght.
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CSM Continuum Damage Model

= Damage evolves as
uncorrelated phenomena

Measured strength - MOdeI iS based On
Measured elastic mc:dulus__ - Straln tensor Sp“t

Model curve for m=2
= Parallel bar model

Model curve for m=4
= Weibull distribution of flaw
strengths in bars

= Viscous regularization in the
strain softening range
= Uniqueness of the solution
depends on determining
energy to break and size
e ] of the failure region
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Failure Zones Iin Fiber Networks

Paper, Alava et al. 2000

= Failure zone morphology is
similar for materials based
P on fiber networks
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Glass + EP, Lavengood 1974
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= Fig. 7. Typical fracture patterns for (a) randomly oriented and

(b) aligned fiber composites.
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Microstructural Models of Fiber Networks

—)

@4 « Astrom et al. 1994

By = Alava et al. 1997
SR = Models used for analyzing
uniaxial tensile strength and
3 fracture process
i ‘,! = Employed simplifying
assumptions make model
more applicable to RFC
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‘ Uniaxial Tensile Failure

= Astrom at al. (1994)

= Microfailure can
occur via bond and
fiber breaks
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Network Failure Process

> | oY
. ‘ Vi
. <\
-~
- A
N / \
- i ’ - \
. ~ ~Z SRR
<. , L I
— ° .
i< v[ ) vT / v‘[
" x [ i o, x
b) - = L+ - B
/

= The initial “percolation” damage switches to a one-dimensional
process at onset of ultimate failure

= Instead of crack growth, the failure is governed by uncorrelated
events in one dimensional zone that extends across the system

= At the end only a number of more or less parallel chains keep the
network from falling apart
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! FNSIm

= Program has been developed to model the
fiber deposition process and analyze the
structure and properties of the resulting fiber
networks

= The program can simulate a variety of fiber
deposition patterns, orientations, fiber types,
layers, network densities, and thicknesses.
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Set Parameter Dialogue

_ Layup LayerData .
...... Fibre Type Data
__ Type Parameters .

) Program (NA)
™ Quasi Random

Mean Fibre Length (M.F.L.) 1.50

Deviation (% of M.F.L.) 10.00
Fibre Length/Major Dia. 15.00 Base Orientation (Deg.) ~ 0.00
Fibre Eccentricity (e) 0.50 Deviation (% of 2Pi Rad.)  10.00

Droop Length (in Fibre Dia.) | 5.00

__ Spray Pattern Options
...... Cross Section Shape &
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e ) Random
| ) Oval
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) Pure Raster |

® Rounded Rectangle
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L Stepsize ({in % M.F.L) W
W Stepsize (in % M.F.L)  25.00
L-Overspray (% M.F.L.) 10.00
W-Owverspray (% M.F.L.) 10.00

Type Num. - 1 Proportion  1.00

Mum. Fibre Types in Layer F? 1

~_ Fibre Orientation Options

Layer Number - 1 Proportion of Total Layup  1.00

® Deposit Types in User Order _ Repeat Layer Sequence (Y/N)

) Depaosit Types In Random Order Sequence Copy Count - 0

Mumber of Layers F? 1

— Global Layup Metrics

— Layup Termination Options

@ On Count

| Length (in.) 5.00 ‘

— Size—i ——— oo Terminal Fibre Count 4000
: ek | -
| Max.Thickness (in.) 300 == TR

Minor Diameter Grid Elements E‘ 5
o " Cancel _‘

o

Program
Controls

Models 3-D
structure of fiber
network

Distribution of
contacts, voids,
segment lengths,
fiber undulation,
layers, etc.

Mixture of fiber
types
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Fiber Deposition Process
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Relevance to Mechanical Models

Stiff fibers

= Experiments and random fiber network simulations show that damage localizes
into 1-D zone with uncorrelated fiber breaks

= Failure in fibers (tows) occur in the segments between fiber's connection with
the network

= Fiber segment is the length on the fiber between its two consecutive contacts
with the other fibers

= Fiber segment determines internal length
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Fiber Centerline Display

Stick Display
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Void Distribution

Void Display
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Fiber Network Statistics

Runlength Distribution 'O e Intersection Distribution
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Run Length (In Unit Cells)

= Distribution of segment lengths has characteristics of Poisson distribution
= Number of fiber-to-fiber intersections has Gaussian character

= The averages of the above statistical distributions are currently used in the
constitutive model to determine average segment length over whichthe fiber
failure occurs

= Actual statistical distribution can be used for further model improvement
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‘ Carbon Fiber (Tow) Model
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Based on experiments by
fiber manufacturer

Strength is a function of
tow length

It is the basic failure
mechanism in composite

The energy to of a tow’s
segment is used to
estimate failure energy
and scaling of energy
dissipation with the
domain (finite element)
size
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Fiber Distribution along Possible Failure Lines

Fiber breaks

20

40

&0

20

oo

Distribution of
fibers crossing
scan lines in
specimen

Failure occurs in 1-D zone orthogonal to the direction of principal tensile stress as
uncorrelated event

Fiber network simulations are used to determine the average number of fibers that

crosses the failure line

Energy to break is then determined by the number of fibers breaking and the fiber

segment energy to break

This energy is important to develop scaling of failure energy
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DENT Energy to Break (A)

Energy to Break @b inD T
350 ¢

300¢ Segment energy

based on total

2304 energy to break

Experiments
200 ¢

150 ¢

100 ¢ Segment energy

based on energy to
max stress l

L @nD

50 ¢

_,/

0:2 0.4 0:6 0:8 i 1:2 1:4
= Experiments are performed on P4 composite

= Lower and upper solid lines (model) provide good bounds for the
energy to break

= Model is linear in segment length (no scaling)
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Mesoscopic Modeling of Damage Evolution
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Diffusive Damage Stress Concentration Localization of damage to
effects are dominant form a percolating crack

« Number of broken bonds scales as L'
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DENT Energy to Break (B)

nergy to Break @b inD

400 }
Segment energy
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300 ¢ energy to break
Experiments
200 | by
Segment energy
100 f
based on energy to
- max stress
—— : : : : : : L @nD
0.2 0.4 0.6 0.8 1 1.2 1.4 "

= The number of broken segments is scaled with exponent 1.7 (obtained
from lattice simulations, see next graph)

= Fiber failure segment length was the same as in the previous graph
= The results confirm model assumptions
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Summary

Fiber network microstructure has been linked to resulting
mechanical properties

Failure in random fiber composite occurs in 1-D
uncorrelated fashion in a band of finite size

Verified model assumptions by DENT experiments

Developed program is applicable to a variety of problems

= Composites, battery substrates, colloid suspensions, filters, paper,
forest products, soft tissue, biomechanics, etc.
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