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Percolation Basics



What is Percolation?
p = 0.58

128 x 128 square lattice

p = 0.60

25 x 25 square lattice

spanning cluster
No spanning cluster

System changes from connected
phase to disconnected phase as
the critical point pc = 0.592746
is approached from above

Phase transition:



pc = 0.592746
critical percolation 
threshold

128 x 128 square lattice

Fracture is a phase transition:
From a connected system to 
a disconnected system

Stiffness of the system is the 
Order parameter:

- non-zero in the connected phase
- zero in the disconnected phase

Percolation theory describes how
system approaches criticality

Scaling Laws

Why should we use Percolation Theory?
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Percolation and Fracture Similarity

System behavior with change in length scale
- couples meso- and macro- phenomena

System size effect



Microstructure evolution

Field

Microstructure (cluster) evolution:
- microcracks
- second-phases

Fields:
- mechanical: stress, strain
- thermal
- electrical
- magnetic

Geometric percolation:
• clusters formed with 
randomly occurring events

Field induced percolation:
• current event is dependent 
on the past history of events

• applied field introduces a 
bias in the occurrence of events

Field Induced Percolation

Correlated Uncorrelated

But, really, fracture is not a random percolation!
Stress distribution plays a significant role.



General Applications



Materials Science Applications

• Nucleation and growth of damage
– Intergranular and transgranular cracking

• Dynamic recrystallization
• Stress induced boundary migration

- Migration of both low and high angle flat boundaries
- Twinning in ferromagnetic shape memory alloys

Thermo-Mechanical Fields:

• Evolution of magnetic domains
• Magnetic Fields in Solidification

– Electromagnetic stirring (Dendrite morphology)
• Electro-migration of interfaces

– Boundary migration related to grain boundary potential

Electrical and Magnetic Fields: 

Chemical Bond Fields:
• Polymer gelation, vulcanization; Glass transition



General Applications
Thermal Fields:

• Boiling of water: liquid-gas phase transition
• Paramagnetic to ferromagnetic phase transition

Electrical Fields:
• Fuse problem: conducting to non-conducting transition
• Dielectric breakdown: non-conducting to conducting transition

Fluid Flow: Geological Applications
• Flow through fractured rocks and porous media
• Earthquakes, fracture and fault patterns

Traffic Flow: Transportation Applications
• Traffic flow on a network

Information Flow on www: Computer Science Applications
• Information flow on www network
• Overloading of computer network within a massively parallel system

Graph Theory:
• Structural failure of a highly redundant system



Common Theme
undergoes phase transition 
at a critical point

random graph with vertices,
mutual interactions as bonds

underlying physics governs 
the redistribution of the applied field 

approaches criticality through 
a change in the interaction
strength

comparison of system behavior 
at different length scales is possible

System size effect on system 
behavior

System Behavior:

System Model:

System Evolution:

Redistribution:

Conservation laws;
Kirchhoff equations

Scaling Laws:
L = 4
L = 8
L = 16
L = 24
L = 32



Damage Evolution in Brittle Materials



Motivation: Stress Induced Microcracking Evolution

Macroscopic properties and behavior of 
quasi-brittle materials are significantly 
effected by the internal microstructure and 
damage/microcracking evolution

Controlling of microstructure state and damage 
evolution leads to improved macroscopic behavior

Modeling at the mesoscale will lead to a fundamental 
understanding of the effect of microstructural features on the 
microcracking evolution in brittle materials

Microcracking evolution

Stress Field



L = 4
L = 8
L = 16
L = 24
L = 32Fo
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Displacement

Open Questions?:
- How does a disordered solid breakdown?

- What is the size effect on failure?

- What are the scaling laws of failure?

- How does one quantify damage? and how do we compare the
extent of damage between two specimens?

- What is the connection between mesoscopic damage
and the phenomenological continuum damage evolution?

Objective

Objective:
– Describe continuum damage evolution based 

on mesoscopic modeling using scaling laws

Mesoscale System Response:
– depends on the system size
– computationally intractable

Scaling Laws



Current Status of Material Models
Phenomenological Material Models:

- progressive damage and cracking are microstructure-insensitive
- based on simplified assumptions for the evolution of damage

- valid only for moderate damage levels
- local stress field fluctuations and interactions are not considered

Explicit modeling of material microstructure combined with the 
scaling theory accounts for size effects and local stress field 
interactions during damage/microcrack evolution

Solution:

L = 4
L = 8
L = 16
L = 24
L = 32Fo

rc
e

Displacement

L = 4
L = 8
L = 16
L = 24
L = 32
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Material response is 
size dependent

Scaling laws are required 
to obtain a “normalized”
response that couple 
mesoscopic and continuum 
length scales



Numerical Methodology



Mesoscopic Simulation: Discrete Lattice Models

Focus of the study is not on any particular material

But, in capturing the generic features of damage evolution

Discrete Lattice Models:
• disorder in bond strength and stiffness
• elastic response characteristics of the bonds
• bond breaking rule (failure criteria)

Essential ingredients of breakage process: 
• Initial material disorder (inhomogeneities) 
• redistribution of stresses due to damage evolution

Any realistic damage evolution description must be capable of 
reproducing the behavior of these idealized discrete lattice models

Perfectly brittle bond



Mesoscopic Modeling Approach
Failure of a bond is governed by

- weakest bond of the disordered medium
- stress concentration around material inhomogenities

Stress

L

Lattice system with disorder
Discretization with random 

disorder distributions

Failure Criteria

Applied Stress
Mesoscopic Damage

Evolution

Disorder Type

Lattice Topology

Lattice Bond Model

+

+



Analysis Procedure

Step 1: Impose a unit macroscopic displacement

Procedure:

L

Lattice system with disorder

∆ = 1

Step 2: Calculate the force fi in each bond through
lattice equilibrium

Step 3: Determine the bond ic for which 
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Step 0: For each bond in the lattice system, assign 
unit stiffness and random force threshold fi

th

∑=
i

2
ifK K Global stiffness

Step 4: Record the lattice displacement and force ( )Kλλ,
Step 5: Remove the bond ic and repeat steps 1-4,
until the entire lattice system breaks apart



Typical Loading Response

In the hardening regime, average material response is obtained with 
fewer number of samples, whereas in the softening regime, 
averaging over many number of samples is required to obtain a 
representative material response

Displacement
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Single lattice response
Lattice response averaged 
over 5000 samples



Lattice Response versus System Size

• Lattice response depends on the system size
• Scaling laws are required to obtain a “normalized” response that
couples the mesoscopic scale response to the continuum scale response

L = 4
L = 8
L = 16
L = 24
L = 32
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Numerical Results



Nucleation Phase:
Diffusive Damage

Growth Phase:
Stress Concentration 
effects are dominant

Coalescence:
Localization of damage to
form a percolating crack

L = 24 L = 32

What is the Intensive Measure of Damage?



What is the intensive damage variable in the problem?

Damage Variable = 
Current Stiffness

Initial Stiffness
1 Close to being 

intensive!

1 
-D

L = 4
L = 8
L = 16
L = 24
L = 32

Mean-field Theory

Finite size effects
nb

Ld
p =

O
rd

er
 p

ar
am

et
er

D
is

co
nn

ec
te

d

C
on

ne
ct

ed

α
ccL Lcpp −=−

Scaling Law

non-zero pc indicates
critical crack size
needed for macroscopic
fracture



Scaling Laws for Lattice Response

∆
L0.75

F
L0.75

Scaling proposed in this study
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Scaling proposed in the literature

Valid in the hardening regime only Scaling is valid until fracture!

Proposed 
Scaling Law: 
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D
D ϕ Dpeak = 0.633 L-0.2

σpeak = 0.2605 + 1.0649 / L



Scaling Laws for Lattice Strain

• Strain and broken bond density are not good measures in the softening regime
• However, lattice force is a good measure of damage over the entire range

D/Dpeak

Peak of Load-
Deflection Curve

Non-overlapping curves
in the softening regime

L = 4
L = 8
L = 16
L = 24
L = 32

ε/εpeak

Peak of Load-
Deflection Curve

nb

nbpeak

D/Dpeak



Gumbel Distribution Weibull Distribution

• Cumulative Probability Scaling Law

Standard Variate = (Ln(F)-ξ)/ζ

Scaling of Failure Load Distribution

L = 4
L = 8
L = 16
L = 24
L = 32
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Lognormal Distribution
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System Size

• Mean failure stress is 
inversely dependent on size

F = 0.2605 * L + 1.0649

Size Effect on the Mean Failure Load

L
1.06490.2605σpeak +=

Griffith’s crack driving force
necessary for macrocrack 
propagation



Geometric Significance of Damage Variable
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L = 4
L = 8
L = 16
L = 24
L = 32Peak of Load-

Deflection Curve

Damage

Second Cluster Moment

Mean Cluster Size

Correlation Length
-Measures correlation of
statistical fluctuations in stress



Computing Requirements

Mesoscopic simulations require O(L4) cpu time for 2D and O(L6) for 3D, 
where “La” is the specimen size and “a” is the average grain size 

Parallel implementation on multiple processors using domain 
decomposition techniques and parallel solvers is essential

Computationally intractable using serial versions

CPU Time (minutes) = 9.036 * 10-8 L4.14

CPU Time (minutes) CPU Time (minutes)
Standard Algorithm New Algorithm

4 0.008 0.003
8 0.012 0.005

16 0.032 0.014
24 0.12 0.05
32 0.3 0.15
64 5.1 2.5

128 185 51

Lattice Size (L)

For L = 1000 Time ~ 166 days!



Meso to Macro: Preliminary Results



Mesoscopic to Continuum Damage Evolution
Uniaxial Case:

( )∆D1KF 0 −=

Damage Evolution:

σ
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′= ϕ Similar to plastic strain evolution

in ductile materials
Includes scaling and size effects

Given:
F and L

Compute:
σ, σpeak, Dpeak

Estimate:
D from scaling law

Compute:
∆

Scaling Law:
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Dpeak = 0.633 L-0.2

L
1.06490.2605σpeak +=
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Comparison of Damage within Different Specimens

Given:
Two different specimens of size L1 and L2 and the 
lattice forces F1 and F2 respectively L1

∆

L2

∆

Estimate:
Damage D1 and D2 within the specimens
based on σ1 and σ2 using the scaling law
for lattice forces
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Compute:
• Scaled stresses σ1 and σ2 corresponding

to F1 and F2
• D1peak and D2peak based on L1 and L2

Compute:
Strains ε1 and ε2 within the specimens
based on D1 and D2 using the scaling law
for lattice strains

Damage estimates based on stresses exhibit
excellent scaling compared to those based on strains



Summary: Scaling Laws and Size Effect in Brittle Materials

• Mean peak stress is inversely dependent on lattice size
• CDF of peak load follows lognormal and 
exhibits excellent scaling with system size

Size Effect on Mean Failure Stress

• Allow for comparison of damage between specimens 
of different sizes

• Couple mesoscopic and continuum damage evolution

Scaling Laws

Field induced percolation provides the necessary framework for
developing damage evolution scaling laws in brittle materials



Mesoscopic Simulation: 
Discrete versus Continuum Models

Discrete Lattice Models
• Suitable for studying the behavior of complex microstructures with heterogeneities
• Captures crack propagation and microstructure evolution with relative ease
• Ideal for studying statistical behavior including scaling and size effects
• Not readily applicable for capturing plasticity dominated phenomena  

Continuum Models
• Suitable for studying the behavior of homogeneous solids
• Mesh size should be much smaller than typical inhomogeneity (crack, grain) size
• Captures inter-granular cracks using cohesive laws
• Not readily applicable for large number of heterogeneities
• Recent investigations on extended FE methods show promise in capturing inter-

and trans-granular cracks and their interaction

Extended FE Models: 
Multiple cracks, growth, interaction 
and coalescence
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