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Motivation: Stress Induced Microcracking Evolution

Macroscopic properties and behavior of 
quasi-brittle materials are significantly 
affected by the internal microstructure and 
damage/microcracking evolution

Controlling of microstructure state and damage 
evolution leads to improved macroscopic behavior

Modeling at the mesoscale will lead to a fundamental 
understanding of the effect of microstructural features on the 
microcracking evolution in brittle materials

Microcracking evolution

Stress Field



Relevant Questions:
- size effect on failure
- intensive measure of damage 
comparing the extent of damage
between two specimens?

Objective
Mesoscale Damage Evolution:

– depends on the system size L
– computationally intractable
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Material response is 
size dependent

Scaling laws are required 
to obtain a “normalized”
response that couple 
mesoscopic and continuum 
length scales

Explicit modeling of material microstructure combined with the 
scaling theory accounts for size effects and local stress field 
interactions during damage/microcrack evolution
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Mesoscopic Simulation: Discrete Lattice Models

Focus of the study is not on any particular material

But, in capturing the generic features of damage evolution

Discrete Lattice Models:
• disorder in bond strength and stiffness
• elastic response characteristics of the bonds
• bond breaking rule (failure criteria)

Essential ingredients of breakage process: 
• Initial material disorder (inhomogeneities) 
• redistribution of stresses due to damage evolution

Any realistic damage evolution description must be capable of 
reproducing the behavior of these idealized discrete lattice models

Perfectly brittle bond



Mesoscopic Modeling Approach
Failure of a bond is governed by

- weakest bond of the disordered medium
- stress concentration around material inhomogenities

Failure Criteria

Applied Stress
Mesoscopic Damage

Evolution

Disorder Type

Lattice Topology

Lattice Bond Model

+

+

Stress

Discretization with random 
disorder distributions

L

Lattice system with disorder



Analysis Procedure

Step 1: Impose a unit macroscopic displacement

Procedure:

Step 2: Calculate the force fi in each bond through
lattice equilibrium

Step 3: Determine the bond ic for which 
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Step 0: For each bond in the lattice system, assign 
unit stiffness and random force threshold fi
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Step 4: Record the lattice displacement and force ( )Kλλ,
Step 5: Remove the bond ic and repeat steps 1-4,
until the entire lattice system breaks apart
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Lattice system with disorder



Typical Loading Response

In the hardening regime, average material response is obtained with 
fewer number of samples, whereas in the softening regime, 
averaging over many number of samples is required to obtain a 
representative material response
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Single lattice response
Lattice response averaged 
over 5000 samples



Lattice Response versus System Size

• Lattice response depends on the system size
• Scaling laws are required to obtain a “normalized” response that
couples the mesoscopic scale response to the continuum scale response
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Nucleation Phase:
Diffusive Damage

Growth Phase:
Stress Concentration 
effects are dominant

Coalescence:
Localization of damage to
form a percolating crack

L = 24 L = 32

What is the Intensive Measure of Damage?



Damage Definition Based on Stiffness Degradation

Damage Variable = 
Current Stiffness

Initial Stiffness
1 Close to being 

intensive!
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Mean-field Theory

Finite size effects
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Renormalization Approach for Scaling

L1 L2 L3

Let L1 L2 L3< <

fraction of broken bonds at scale L1p
L2fraction of broken bonds at scale p′

Coarse Graining*
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(* such that the probability of failure 
under the influence of external load 
remains the same at both scales)

non-zero      indicates critical crack size
needed for macroscopic fracture

∞p



Intensive Definition of Damage
α

L Lcpp −
∞∞ =− ( )αelL LcpNn −

∞∞ +=

( )∞∞ = pcc

L = 16
L = 32

L = 64

L = 128

L = 256

∞→L

4 0.303 0.207
8 0.244 0.1813

16 0.2023 0.1612
24 0.1841 0.1513
32 0.1731 0.1451
64 0.1524 0.1325
128 0.1362 0.1222
256 0.1238 0.1142
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Standard variate = (p – Mean(p)) / Std(p)

Probability Distributions for Fraction of 
Broken Bonds at Failure and at Peak Load

pf = Mean fraction of broken bonds at failure
pp = Mean fraction of broken bonds at peak load

Probability distributions for fraction of broken bonds at failure 
as well as at peak load are identical



Let Bk = {set of k “primary” broken bonds}

Probability f(k+1) that (k+1)th “primary” bond fails
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In the case of broadly distributed heterogeneities, 
the scale factors gj become independent distributed 
random variables. (Since they depend not only on 
the stress concentration factors but also on the 
initial randomly distributed bond threshold values)

Stress σ(k+1) required to break (k+1)th “primary” bond 1
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Failure Load Distribution



Gumbel Distribution Weibull Distribution

• Cumulative Probability Scaling Law

Standard Variate = (Ln(F)-ξ)/ζ

Scaling of Failure Load Distribution
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Size Effect on the Mean Failure Load
P
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System Size L

F = C1 * Lα + C2
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L
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Mean fracture strength decreases very slowly with increasing system 
size L, and scales as
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Computing Requirements

Mesoscopic simulations require O(L4) cpu time for 2D and O(L6) for 3D, 
where “La” is the specimen size and “a” is the average grain size 

CPU Time (sec) CPU Time (sec)
PCG Algorithm New Algorithm

32 11.66 0.592
64 173.6 10.72

128 7473 212.2
256 5647
512  93779

Lattice Size (L)

CPU Time (sec) = 1.53 * 10-7 L4.36

For L = 1000 Time ~ 21 days!



Summary

• For materials with broadly distributed heterogeneities, a lognormal 
distribution represents the fracture strength more adequately than
the Weibull and modified Gumbel distributions

• Mean fracture strength behaves as ( )( ) L
C

Llog
C σ 2

ψ
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peak += , and 
scales as ( )( )ψ

1
peak Llog

C σ ≈ for very large L

• For materials with broadly distributed heterogeneities, the fraction 
of the broken bonds is finite, even as the sample size becomes 
large, which is in contrast with the weakest-link case

• The scaling law for the fraction of broken bonds
α

L Lcpp −
∞∞ =−

avoids some of the inconsistencies associated with the conventional
power law type expressions



Mesoscopic Simulation: 
Discrete versus Continuum Models

Discrete Lattice Models
• Suitable for studying the behavior of complex microstructures with heterogeneities
• Captures crack propagation and microstructure evolution with relative ease
• Ideal for studying statistical behavior including scaling and size effects
• Not readily applicable for capturing plasticity dominated phenomena  

Continuum Models
• Suitable for studying the behavior of homogeneous solids
• Mesh size should be much smaller than typical inhomogeneity (crack, grain) size
• Captures inter-granular cracks using cohesive laws
• Not readily applicable for large number of heterogeneities
• Recent investigations on extended FE methods show promise in capturing inter-

and trans-granular cracks and their interaction

Extended FE Models: 
Multiple cracks, growth, interaction 
and coalescence
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