
Scaling Laws for Damage Evolution in 
Disordered Materials:

Numerical Aspects

Srdjan Simunovic
Phani Kumar V.V. Nukala

Oak Ridge National Laboratory
Computer Science and Mathematics Division

simunovics@ornl.gov
http://www-cms.ornl.gov



Outline
• Motivation
• Modeling of damage evolution in materials 

and material breakdown
• Numerical aspects
• Developed algorithm
• Conclusions



Damage Evolution and Fracture
in Disordered Materials



Motivation: Stress Induced Microcracking Evolution

Macroscopic properties and behavior of 
quasi-brittle materials are significantly 
effected by the internal microstructure and 
damage/microcracking evolution

Controlling of microstructure state and damage 
evolution leads to improved macroscopic behavior

Modeling at the mesoscale will lead to a fundamental 
understanding of the effect of microstructural features on the 
microcracking evolution in brittle materials

Microcracking evolution

Stress Field
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Open Questions?:
- How does a disordered solid breakdown?

- What is the size effect on failure?

- What are the scaling laws of failure?

- How does one quantify damage? and how do we compare the
extent of damage between two specimens?

- What is the connection between mesoscopic damage
and the phenomenological continuum damage evolution?

Objective

Objective:
– Describe continuum damage evolution based 

on mesoscopic modeling using scaling laws

Mesoscale System Response:
– depends on the system size
– computationally intractable

Scaling Laws



Current Status of Material Models
Phenomenological Material Models:

- progressive damage and cracking are microstructure-insensitive
- based on simplified assumptions for the evolution of damage

- valid only for moderate damage levels
- local stress field fluctuations and interactions are not considered

Explicit modeling of material microstructure combined with the 
scaling theory accounts for size effects and local stress field 
interactions during damage/microcrack evolution

Solution:
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Material response is 
size dependent

Scaling laws are required 
to obtain a “normalized”
response that couple 
mesoscopic and continuum 
length scales



Numerical Methodology



Mesoscopic Simulation: Discrete Lattice Models

Focus of the study is not on any particular material

Focus is on capturing the generic features of damage evolution

Discrete Lattice Models:
• disorder in bond strength and stiffness
• elastic response characteristics of the bonds
• bond breaking rule (failure criteria)

Essential ingredients of breakage process: 
• Initial material disorder (inhomogeneities) 
• redistribution of stresses due to damage evolution

Any realistic damage evolution description must be capable of 
reproducing the behavior of these idealized discrete lattice models

Perfectly brittle bond



Mesoscopic Modeling Approach
Failure of a bond is governed by

- weakest bond of the disordered medium
- stress concentration around material inhomogenities

Stress

L

Lattice system with disorder
Discretization with random 

disorder distributions

Failure Criteria

Applied Stress
Mesoscopic Damage

Evolution

Disorder Type

Lattice Topology

Lattice Bond Model

+

+



Analysis Procedure

Step 1: Impose a unit macroscopic displacement

Procedure:

L

Lattice system with disorder

∆ = 1

Step 2: Calculate the force fi in each bond through
lattice equilibrium

Step 3: Determine the bond ic for which 

 

1
λ

=
i

max fi
fi

th

 

 
 

 

 
 

Step 0: For each bond in the lattice system, assign 
unit stiffness and random force threshold fi
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Step 4: Record the lattice displacement and force  x, Kx( )
Step 5: Remove the bond ic and repeat steps 1-4,
until the entire lattice system breaks apart



Typical Loading Response

In the hardening regime, average material response is obtained with 
fewer number of samples, whereas in the softening regime, 
averaging over many number of samples is required to obtain a 
representative material response
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Single lattice response
Lattice response averaged 
over 5000 samples



Lattice Response versus System Size

• Lattice response depends on the system size
• Scaling laws are required to obtain a “normalized” response that
couples the mesoscopic scale response to the continuum scale response
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Nucleation Phase:
Diffusive Damage

Growth Phase:
Stress Concentration 
effects are dominant

Coalescence:
Localization of damage to
form a percolating crack

L = 24 L = 32

Example 1: Damage Evolution and Fracture in Tension



Example 2: Temperature Induced Microcracking
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Simulation Data:
Molybdenum: 
E = 324.054 GPa
α = 4.8E-06 /K
ν = 0.31

Misorientation dependent 
low angle grain boundary 
fracture strength for Mo
(Watanabe et. al)

Investigation of the effect of 
microstructural features on 
microcrack evolution 
in brittle materials due to thermal 
expansion anisotropy

Movie



Developed Scaling Laws



Discussion on Scaling Laws
• Developed scaling laws imply existence of 

finite critical fracture threshold, below 
which, fracture of infinite system does not 
occur
– Earlier results based on power laws imply that 

critical threshold approaches zero in an infinite 
system

• Existence of finite threshold may be 
associated with a critical crack size

• Numerical results substantiate the proposed 
scaling laws



Numerical Aspects



Computational Analysis
1. External loads are gradually increased 

until a bond threshold is reached
2. The bond is broken
3. Forces redistribute within the system 

instantaneously
4. Process of breaking bonds irreversibly one 

after another is repeated until the lattice 
network finally becomes disconnected



Computational Requirements
• New set of governing linear equations have to be 

solved every time a lattice bond is broken
• To obtain statistically significant results, large 

number of lattices, threshold distributions and 
loadings have to be analyzed
– Different bond threshold distributions for essentially 

the same lattice result in different breaking sequences
– Different loading conditions change breaking sequences 

as well
– Original lattice and its stiffness matrix is the same



Previous Approaches
• Reduce scope of analysis

– Assume percolation character of damage before 
breakdown

– Use diluted network and look for a breaking of the first 
bond

– Does not evolve the damage in natural way
• Jacobi iteration method

– Slow
• PCG 

– Critical slowing down close to lattice breakdown
– Fourier accelerated solvers show best performance

• Do not work well on central force lattices, bond bending, etc.

• Small systems



Characteristics of Bond Breaking
• A faster algorithm can be developed if we 

recognize what breaking of a single bond 
does to the system of equations

• Bond breaking (removal) is equivalent to 
rank-one update of a matrix



System Update
• Assuming inverse of An is available, the inverse of 

An+1 can be obtained by updating inverse of An
using Sherman-Morrison-Woodbury formula

• Inverse is not usually explicitly calculated, and un
is obtained using An through a back solve 
operation on vector v.



Broken Bond Location
• Bond internal to the lattice

• Bond attached to a prescribed DOF

• Updating the load vector



Solution Update after Bond Break
• Before the break of n+1 bond

• After the break



Solution Update after Bond Break



Solution Update Algorithm
• Only unknown is vector u which can be 

obtained through back solve operation
• It is not necessary to explicitly assemble 

An+1 and perform factorization to do back 
solve operation

• We can use already factorized Am (m<n) to 
obtain vector u
– m is the latest load increment (bond break 

index) for which factorize A is available



Solution Update Algorithm
• Decompose

where

• C is never explicitly calculated or stored
– u vectors are stored instead and used as



Obtaining New Factorizations
• C(i-j) reduces storage and computational 

requirements each to  ~ O(p nDOF)
• Even with this reduction calculation of C(i-j) may 

become prohibitive as p increases
– Factorize or update A

• Options:
– Factorize again after p=maxupd
– Update factorization using multiple-rank sparse 

Cholesky factorization update (Davis et al.)
– Update using series of rank-one updates
– Update factorization using modified dense Cholesky 

factorization update (Davis et al.)



Circulant Preconditioners for PCG
• Proposed method is compared against PCG 

method
• Circulant preconditioners can be diagonalized 

using discrete Fourier matrices
• It is possible to choose a circulant preconditioner 

that minimizes the condition number of the 
preconditioned system

• Exhibit favorable clustering of eigenvalues
• Circulant preconditioners are better than 

ensemble-averaged circulant preconditioner used 
in the past for similar analyses

• Block-circulant preconditioners were also used for 
comparison



Solvers Based on the Proposed Method



Performance of Developed Solvers



PCG Performance



Conclusions
• For material damage and fracture analyses, the 

proposed algorithms have shown better 
performance than available PCG solvers

• Algorithms take advantage of the bond breaking 
process to speed up the overall computations
– Completely eliminates critical slowing down near 

lattice breakdown
• For very large problems, matrix factorizations can 

be done using parallel processing and then 
factored matrix can be distributed to each 
processor to continue independent fracture 
simulations
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