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Motivation: Stress Induced Microcracking Evolution

. _ _ Stress Field
Macroscopic properties and behavior of ot

quasi-brittle materials are significantly NS e
effected by the internal microstructure and ,l}@%'ﬁa;_‘il’;ﬁ;?#
damage/microcracking evolution ‘

Microcracking evolution

Controlling of microstructure state and damage
evolution leads to improved macroscopic behavior

Modeling at the mesoscale will lead to a fundamental
understanding of the effect of microstructural features on the

microcracking evolution in brittle materials
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Objective

Mesoscale System Response:

— depends on the system size
— computationally intractable

——

Open Questions?:

- How does a disordered solid breakdown?

- What is the size effect on failure?

- What are the scaling laws of failure?

Scaling Laws
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- How does one quantify damage? and how do we compare the
extent of damage between two specimens?

- What is the connection between mesoscopic damage
and the phenomenological continuum damage evolution?

Obijective:

— Describe continuum damage evolution based
on mesoscopic modeling using scaling laws




Current Status of Material Models

Phenomenological Material Models:

- progressive damage and cracking are microstructure-insensitive
- based on simplified assumptions for the evolution of damage
- valid only for moderate damage levels

- local stress field fluctuations and interactions are not considered

[L=4 - Material response is n o
t e size dependent %
Q| t= ;2 % ol
S |L=3 I 5 i
Ly 7 Scaling laws are required Q.
to obtain a “normalized” S
— | response that couple 20

Displacement mesoscopic and continuum

] length scales
Solution:

Explicit modeling of material microstructure combined with the
scaling theory accounts for size effects and local stress field
interactions during damage/microcrack evolution i



Numerical Methodology



Mesoscopic Simulation: Discrete Lattice Models

Focus of the study is not on any particular material

Focus is on capturing the generic features of damage evolution

Essential ingredients of breakage process:
» Initial material disorder (inhomogeneities)
» redistribution of stresses due to damage evolution

Perfectly brittle bond

Discrete Lattice Models:
« disorder in bond strength and stiffness
» elastic response characteristics of the bonds
* bond breaking rule (failure criteria)

Any realistic damage evolution description must be capable of
reproducing the behavior of these idealized discrete lattice models
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Mesoscopic Modeling Approach

Failure of a bond is governed by

- weakest bond of the disordered medium
- stress concentration around material inhomogenities

Stress
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Lattice Bond Model

Discretization with random
disorder distributions

Applied Stress
> >

Failure Criteria

Lattice system with disorder

Mesoscopic Damage
Evolution




Analysis Procedure

Procedure: A%

Step O: For each bond in the lattice system, assign
unit stiffness and random force threshold f.t"

Step 1: Impose a unit macroscopic displacement L

Step 2: Calculate the force f, in each bond through
lattice equilibrium

Lattice system with disorder

K= Zf,z K Global stiffness
i
Step 3: Determine the bond i, for which

1 f
P miax i
Step 4: Record the lattice displacement and force (X, KX)

Step 5: Remove the bond i, and repeat steps 1-4,
until the entire lattice system breaks apart ST ]



Typical Loading Response
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In the hardening regime, average material response is obtained with
fewer number of samples, whereas in the softening regime,

averaging over many number of samples is required to obtain a
representative material response l



Lattice Response versus System Size

| L=16
L =24
T L=32

Force

Displacement

» Lattice response depends on the system size
« Scaling laws are required to obtain a “normalized” response that
couples the mesoscopic scale response to the continuum scale response
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Example 1: Damage Evolution and Fracture in Tension
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Nucleation Phase:
Diffusive Damage

Growth Phase:
Stress Concentration
effects are dominant

Coalescence:
Localization of damage to
form a percolating crack
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Example 2: Temperature Induced Microcracking

Investigation of the effect of
microstructural features on
microcrack evolution

in brittle materials due to thermal
expansion anisotropy

1800

Transgranular T
cracks

g

:

Broken Bond Strength
2 g B
=1 =]

T T

g

Broken Bond Strength

400

o i I I
Q 500 1000 1500 2000 2500 3000 3500 4000
MNumber of Broken Bonds

# of broken bonds

Microgtroctura 10 links broksn

14
:1 =
I -. :
[T=] i
1.
E-
il I K
[}
o LDk o
4] 20

*; _.

T
AT
43 ad 10

Simulation Data:
Molybdenum:

E = 324.054 GPa
o = 4.8E-06 /K

v =0.31

60 0
L =100
Misorientation dependent
low angle grain boundary
fracture strength for Mo
(Watanabe et. al)
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Developed Scaling Laws

pr, —p = cL™%
APfL = cp L7
(Pf, — p*) = cpDpr,

pr, and p* denote the fracture thresholds

in a lattice system size of L and infinity,

£ ] — {_:
and Cp = oo



Discussion on Scaling Laws

* Developed scaling laws imply existence of
finite critical fracture threshold, below
which, fracture of infinite system does not
occur
— Earlier results based on power laws imply that

critical threshold approaches zero in an infinite
system

» Existence of finite threshold may be
associated with a critical crack size

* Numerical results substantiate the proposed
scaling laws



Numerical Aspects



Computational Analysis

. External loads are gradually increased
until a bond threshold 1s reached

The bond 1s broken

. Forces redistribute within the system
instantaneously

. Process of breaking bonds irreversibly one
after another 1s repeated until the lattice
network finally becomes disconnected



Computational Requirements

* New set of governing linear equations have to be
solved every time a lattice bond 1s broken

* To obtain statistically significant results, large
number of lattices, threshold distributions and
loadings have to be analyzed

— Different bond threshold distributions for essentially
the same lattice result in different breaking sequences

— Different loading conditions change breaking sequences
as well

— Original lattice and its stiffness matrix is the same



Previous Approaches

Reduce scope of analysis

— Assume percolation character of damage before
breakdown

— Use diluted network and look for a breaking of the first
bond

— Does not evolve the damage in natural way
Jacobi 1iteration method
— Slow

PCG

— Critical slowing down close to lattice breakdown
— Fourier accelerated solvers show best performance

* Do not work well on central force lattices, bond bending, etc.

Small systems



Characteristics of Bond Breaking

A faster algorithm can be developed 1f we
recognize what breaking of a single bond
does to the system of equations

A—TF. Xy — bn

* Bond breaking (removal) 1s equivalent to
rank-one update of a matrix

vi = {0 -~ 1 ... -1 - 0}



System Update

» Assuming inverse of A 1s available, the inverse of
A, .4 can be obtained by updating inverse of A
using Sherman-Morrison-Woodbury formula

uu’

Al = |AT 4+ Ky
71 + ] (l_kij Vf:u)

n+1

u = Alv = A.;l( [(i“j — ™ columns of A.;l}

i—j)
* Inverse 1s not usually explicitly calculated, and u
1s obtained using A through a back solve

operation on vector v.



Broken Bond Location

 Bond internal to the lattice

vi = {0 -~ 1 .- -1 .- 0}
* Bond attached to a prescribed DOF

vi = {0 -~ 1 .-~ 0}
u = A_lw = [?ﬁm columns of A;l}
« Updating the load vector

bﬂ.—l—lzb-n—'_w
w=kk; {O O -« -1 .-~ 0 0}



Solution Update after Bond Break

 Betfore the break of n+/ bond
A—ﬂx'?l — bﬂ,

e After the break

A-n—l—lx-n—l—l — bﬂ—|—1

—1
K'?l‘l_]. — A-‘,rl—|—1 b'ﬂ:"‘l

uu’

(1 — kij th_l)

f
X, + a (u'b,+1) u

A;l -+ kij l:b.n -+ W:l



Solution Update after Bond Break

C¥

:E.Ti' '
— / — — k;; it 2 or jis prescribed
(1 — 'E'Tij Vv ll)
Kij _ o
— - otherwise
(1 — :I'.‘:ij V u)



Solution Update Algorithm

* Only unknown 1s vector u which can be
obtained through back solve operation

* It 1s not necessary to explicitly assemble
A, ,, and perform factorization to do back
solve operation

* We can use already factorized A, (m<n) to
obtain vector u

— m 1s the latest load increment (bond break
index) for which factorize A 1s available



Solution Update Algorithm

 Decompose

A=A '+ C
where

* C is never explicitly calculated or stored

— u vectors are stored instead and used as

p=(n—m)

(wg; — )
C[;_?] = Z }ff I 11

11 (1 — fi:g Vfllg)




Obtaining New Factorizations

* Ciy reduces storage and computational
requirements each to ~ O(p npp)

* Even with this reduction calculation of C; ;) may
become prohibitive as p increases

— Factorize or update A
* Options:
— Factorize again after p=maxupd

— Update factorization using multiple-rank sparse
Cholesky factorization update (Davis et al.)

— Update using series of rank-one updates

— Update factorization using modified dense Cholesky
factorization update (Davis et al.)



Circulant Preconditioners for PCG

Proposed method 1s compared against PCG
method

Circulant preconditioners can be diagonalized
using discrete Fourier matrices

It 1s possible to choose a circulant preconditioner
that minimizes the condition number of the
preconditioned system

Exhibit favorable clustering of eigenvalues

Circulant preconditioners are better than
ensemble-averaged circulant preconditioner used
in the past for similar analyses

Block-circulant preconditioners were also used for
comparison
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Solvers Based on the Proposed Method

o Solver Type 1. Factorization of the matrix A is performed every maxzupd
steps. Assuming that the factorization L, of the stiffness matrix A,, is
available after burning the mth fuse, determine the solution vector x,, 41
after the (n + 1) fuse is burnt.

o Solver Type 2: Factorization of the matrix A is performed every maxzupd
steps. Assuming that the factorization L,, of A,, is available, the dense
matrix update is used to obtain the solution vector x,, {, after the (n+ l)” '
fuse is burnt.

o Solver Type 3. Given the factorization L,,, of A,,, rank-1 sparse Cholesky
update/downdate is used to update the factorization L, 1 for all subse-
quent values of n = m,m+1,---. Once the factorization L, .1 of A, ;1 is
obtained, the solution vector x,,,1 1s obtained by a backsolve operation.

e Solver Type 4: Given the factorization L,, of A,,. determine the solution
vector x,, 1 after the (n-+ l)”*’ fuse is burnt. The difference between Types
1 and 4 is that instead of refactorizing the matrix after maxupd steps, we
use rank-p sparse Cholesky update/downdate (algorithm 1) to obtain the
factorization L,,+mazupd Of the matrix A, 1 mazupd- s il



Performance of Developed Solvers

Size | CPU(sec) | Wall(sec) | Simulations Size | CPU(sec) | Wall(sec) | Simulations
32 0.566 0.655 20000 32 0.592 0.687 20000
64 9.641 10.59 4000 64 10.72 11.26 4000
128 203.1 213.4 800 128 212.2 214.9 800
256 6121 6139 96 256 H647 5662 96
512 | 93779 | 96515 16
Size | CPU(sec) | Wall(sec) | Simulations || Size | CPU(sec) | Wall(sec) | Simulations
32 0.679 0.771 20000 32 0.543 0.633 20000
64 11.18 12.28 4000 64 11.15 12.01 4000
128 | 2544 260.2 800 128 1 2115 214.1 800
256 6112 6147 96 256 6413 6701 96




PCG Performance

CG Iterative Solver (No preconditioner)

Size | CPUf(sec) | Wall(sec) | Iterations | Simulations
32 7.667 8.016 66254 20000
64 203.5 205.7 405510 1600
CG Iterative Solver (Incomplete Cholesky)
Size | CPUf(sec) | Wall(sec) | Iterations | Simulations
32 2.831 3.008 5857 20000
64 62.15 65.61 29496 4000
128 1391 1430 148170 320
T. Chan’s optimal circulant PCG
Size | CPU(sec) | Wall(sec) | Iterations | Simulations
32 11.66 12.26 25469 20000
64 173.6 178.8 120570 1600
128 7473 7725 622140 128
T. Chan’s block-circulant PCG
Size | CPU(sec) | Wall(sec) | Iterations | Simulations
32 10.00 10.68 11597 20000
64 135.9 139.8 41207 1600
128 2818 2846 147510 192
256 94717 96500 32




Conclusions

* For material damage and fracture analyses, the
proposed algorithms have shown better
performance than available PCG solvers

» Algorithms take advantage of the bond breaking
process to speed up the overall computations

— Completely eliminates critical slowing down near
lattice breakdown
* For very large problems, matrix factorizations can
be done using parallel processing and then
factored matrix can be distributed to each
processor to continue independent fracture
simulations
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