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Abstract

Scaling laws derived from mesoscopic discrete lattice models are typically used for coupling the mesoscopic damage
evolution with the continuum damage response and in determining the size effects on the constitutive response of
materials. This study develops the scaling laws based on the Renormalization Group (RG) methodology for the
number of bonds broken in a discrete lattice before the macroscopic fracture occurs. The developed scaling laws
imply the existence of a finite critical fracture threshold, defined as a fraction of number of broken bonds to the total
number of bonds, below which macroscopic fracture of an infinite system does not occur. This result is in contrast with
earlier results based on power law curve fit expressions, wherein the critical threshold approaches zero in the limit of
an infinite system. However, the existence of a finite critical fracture threshold can be associated with a critical crack
size, below which macroscopic fracture of a specimen does not occur. Further, the finite size scaling law based on the
RG methodology remains accuratewith increasing system sizeand also avoids certain inconsistencies associated with
conventional power law type expressions reported in the literature. Numerical simulations based on two-dimensional
triangular and diamond lattice networks substantiate the proposed scaling laws and are used to estimate the critical
thresholds and the scaling exponents.

1 Introduction

Damage evolution leading to breakdown of disordered quasi-brittle materials has received consid-
erable interest from material scientists, physicists, and engineers for many years [1, 2, 3, 4, 5, 6, 7].
Despite significant advances, many fundamental aspects of damage evolution leading to break-
down of materials still remain unanswered. Indeed, while definitions of damage based on average
broken bond density or stiffness degradation are suitable to represent the extent of damage within
the early stages of hardening regimes, where the damage levels are moderate and spatially diffused,
they are inadequate around the peak load and especially in the softening regime of the stress-strain

1The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-
AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

2Corresponding author: nukalapk@ornl.gov

1



curve. Most importantly, these definitions of damage are size-dependent; however, defining dam-
age as an intensive variable independent of size is essential for comparing the amount of damage
across different specimen sizes and for obtaining the scaling laws of fracture that are valid even in
the softening regime of the material stress-strain curve.

2 Renormalization Group (RG) Approach

The Renormalization Group (RG) approach presents an attractive theoretical framework for ob-
taining the scaling laws of damage in disordered media. Damage evolution leading to material
breakdown in disordered media under quasi-static loading can be described as a model system
heading towards its critical point (phase transition) [8, 9, 10, 11, 12]. In the above description
of material breakdown, the critical point is defined as that equilibrium state at which the material
breaks apart, i.e., the secant stiffness becomes zero. The main idea of the RG transformation is
to perform coarse graining followed by rescaling of lengths such that in the new length units the
coarse grained description of the system is statistically similar to the original system at the finer
scale, but with a different set of parameter values. Repeating this coarse graining procedure leads
to a sequence of parameter values at coarser length scales and the system moves away from the
critical fixed point of the RG transformation in the parameter space. Unless the system is at the
fracture threshold (critical fixed point), successive coarse graining transformations lead the sys-
tem to a trivial fixed point represented by the bulk-phase of the damaged material. At the critical
fixed point, a singular behavior is obtained due to infinite number of repetitions of the RG trans-
formation. This singular behavior is the origin of universality of the critical exponents observed at
fracture.

Based on the RG approach, we propose a finite size scaling law of the form

pfL
− p? = cL−αρ (1)

for the fraction of broken bonds at lattice system failure. In the Eq. (1),pfL
andp? represent the

fracture thresholds in a lattice system size ofL and infinity, respectively, andcp is a constant. This
finite size scaling law presents the influence of system size,L, on the critical fracture threshold,p?.
As the system sizeL → ∞, the average fraction of broken bonds at failurepfL

→ p?. Numerical
simulation results on two-dimensional triangular and diamond (square lattice with 45 degress in-
clined bonds) lattice networks support this scaling relation and suggest the existence of a non-zero
critical fracture threshold,p?, below which macroscopic fracture does not occur in an infinite sys-
tem. This critical fracture threshold,p?, may be associated with the critical crack size,ac, below
which macroscopic fracture does not occur in the continuum fracture mechanics description. This
result is in contrast with the power law-type expressions given in the literature for the number of
broken bonds, which suggest that the probability of bond failure,pfL

tends to zero asL approaches
infinity [5, 6, 13]. Moreover, the finite size scaling form developed in this study eliminates some
of the inconsistencies associated with the conventional power-law type scaling expressions used
for the number of broken bonds at the peak load and at fracture.
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3 Numerical Simulations

Progressive damage evolution leading to failure of disordered quasi-brittle materials has been stud-
ied numerically using various types of discrete lattice models [5, 6, 7, 2]. The essential features of
discrete lattice models are disorder, elastic response characteristics and a breaking rule for each of
the bonds in the lattice. We shall use an electrical equivalence to the mechanical problem, thereby
assuming that the successive bond failures leading ultimately to the lattice system failure is similar
to the breakdown of quasi-brittle materials [13]. We consider arandom thresholdmodel problem,
where a lattice consists of fuses having the same conductance, but the bond breaking thresholds,
ic, are based on a broad (uniform) probability distribution, which is constant between 0 and 1.
A broad thresholds distribution represents large disorder and exhibits diffusive damage leading to
progressive localization, whereas a very narrow thresholds distribution exhibits brittle failure in
which a single crack propagation causes material failure.

Periodic boundary conditions are imposed in the horizontal direction to simulate an infinite
system and a constant voltage difference (displacement or strain) is applied between the top and
the bottom of lattice system. The simulation is initiated with a lattice of intact fuses in which
disorder is introduced through random breaking thresholds. The voltageV across the lattice system
is increased until a fuse (bond breaking) burns out. The burning of a fuse occurs whenever the
electrical current (stress) in the fuse (bond) exceeds the breaking threshold current (stress) value
of the fuse. The current is redistributed instantaneously after a fuse is burnt. The voltage is then
gradually increased until a second fuse is burnt, and the process is repeated.

4 Results and Discussion

The main focus of this paper is to estimate the critical fracture threshold, defined as the fraction of
the number of broken bonds to the total number of bonds, below which the macroscopic fracture
of an infinite system does not occur. In this study, we applied the RG methodology to derive the
functional form of the scaling law for the number of broken bonds at failure and substantiate this
result with numerical simulations. Table 1 presents the number of broken bonds at peak load,np,
and at fracture,nf , for each of the lattice sizes considered.

Using Eq. (1), a simple curve fit of the simulation results obtained for the mean fraction of
broken bonds at failure and at peak load yields (Figs. 1(a) and 1(b))

pfL
− 0.0963 = 0.3995 L−0.477 (2)

ppL
− 0.0834 = 0.1962 L−0.334 (3)

For a triangular lattice topology, the number of broken bonds at fracture,nf , and at peak load,
np, may be obtained from the above relations usingpfL

=
nf

Nel
, andppL

= np

Nel
, whereNel =

(3L + 1)(L + 1). It should be noted that Eqs. (2) and (3) eliminate the inconsistency associated
with the number of broken bonds at the peak load and at fracture for large system sizes. That is,
using Eqs. (2) and (3), the number of broken bonds at the peak load is always less than the number
of broken bonds at fracture even for large system sizes.
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For diamond lattice topology, similar results have been obtained. The scaling law for the mean
fraction of broken bonds at failure and at peak load are given by

pfL
− 0.0908 = 0.677 L−0.666 (4)

ppL
− 0.0875 = 0.367 L−0.654 (5)

The total number of bonds,Nel, in a diamond topological lattice with periodic boundary conditions
in the horizontal direction is given byNel = 2L(L + 1).

The cumulative probability distribution for the fraction of broken bonds at failure, defined
as the probabilityΠpf (pf , L) that a system of sizeL fails when the fraction of broken bonds

equalspf = nf
Nel

, may be plotted usinḡpf defined as̄pf =
(nf−µnf )

σnf
=

(pf−pfL
)

∆pfL

, for varying

system sizes, as shown in Fig. 2(a). The subscriptf denotes that the cumulative distribution is
considered for the fraction of broken bonds at failure. Figure 2(a) shows thatΠpf (pf , L) may be
expressed in a universal scaling form such thatΠpf (pf , L) = Πpf (p̄f ) for different values ofpf

and system sizesL. Figure 2(b) presents the cumulative probability distribution for the fraction
of broken bonds at peak loadΠpp(pp, L), where the subscriptp denotes the distribution for the
fraction of broken bonds at peak load. Once again, the results in Fig. 2(b) indicate thatΠpp(pp, L)

may be expressed in an universal scaling form using the standard variatep̄p = (np−µnp)
σnp

such
that Πpp(pp, L) = Πpp(p̄p). Figure 3 provides a comparison between the cumulative probability
distributions at failure,Πpf (p̄f ), and at peak load,Πpp(p̄p). Based on the numerical simulation
results presented in Fig. 3, it is clear that the cumulative probability distributions for the fraction
of broken bonds at failure,Πpf , and at the peak load,Πpp, are identical. That is,Πp = Πpf = Πpp.
In addition, it can also be concluded that a Gaussian distribution adequately describesΠp.

5 Conclusions

Scaling laws derived from numerical simulations based on mesoscopic discrete lattice models are
typically used for coupling the mesoscopic damage evolution with the continuum damage response
and in determining the size effects on the constitutive response of materials. This study develops
the scaling laws based on the RG methodology for the number of bonds broken in a discrete lat-
tice before the macroscopic fracture occurs. The developed scaling laws incorporate the finite
size scaling effects and are consistent with increasing system size. Numerical simulation results
on two-dimensional triangular and diamond (square lattice with 45 degress inclined bonds) lat-
tice networks support this scaling relation and suggest the existence of a non-zero critical fracture
threshold,p?, below which macroscopic fracture does not occur in an infinite system. This critical
fracture threshold,p?, may be associated with the critical crack size,ac, below which macroscopic
fracture does not occur in the continuum fracture mechanics description. When the scaling rela-
tions derived in this paper are used to make predictions for the number of broken bonds at the peak
load and at failure with increasing lattice system sizes, an excellent agreement is obtained between
the predicted scaling law estimates and the numerical simulations.
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Table 1: Number of broken bonds at peak and at failure

L Nconfig time Triangular Diamond
(seconds) np nf np nf

4 50000 0.002 13 19 9 14
8 50000 0.006 41 54 26 37
16 50000 0.042 134 168 80 107
24 50000 0.186 276 335 161 208
32 50000 0.592 465 554 268 337
64 50000 10.72 1662 1911 942 1126
128 12000 212.2 6068 6766 3406 3901
256 1200 5647 22572 24474 12571 13846
512 200 93779 84487 89595
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Figure 1: Scaling of critical fracture threshold, (a)pfL
(b) ppL

, with system size,L, in a triangular
lattice
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Figure 2: Cumulative probability distribution of broken bonds at (a) failure (b) peak load with
varying system sizes,L, in a triangular lattice
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Figure 3: Comparison of cumulative probability distribution of broken bonds at the peak load and
at failure with varying system sizes,L, in a triangular lattice: (a)L = 24 (b)L = 32 (c)L = 64 (d)
L = 128 (e)L = 256 (f)L = 16, 24, 32, 64, 128, 256
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