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Abstract 

 
We note that a set of statistically “unusual” protein-
profile pairs in experimentally determined database of 
protein-protein interactions can typify protein-protein 
interactions, and propose a novel method called 
PICUPP that sifts such protein-profile pairs using a 
statistical simulation. It is demonstrated that unusual 
Pfam and InterPro profile pairs can be extracted from 
the DIP database using a bootstrapping approach. We 
particularly illustrate that such protein-profile pairs can 
be used for predicting putative pairs of interacting 
proteins. Their prediction accuracies are around 86% 
and 90% when InterPro and Pfam profiles are used, 
respectively at 75% confidence level.  
 

1. Introduction 
 

Protein-protein interactions are fundamental to 
cellular processes. They are responsible for phenomena 
like DNA replication/transcription, regulation of 
metabolic pathways, immunologic recognition, signal 
transduction, etc. The identification of interacting 
proteins is therefore an important prerequisite step in 
understanding its physiological function. From a 
computational standpoint, the problem is how we can 
predict that two proteins interact from their structures or 
sequence information. Various computational methods 
using genomic context alone have recently been 
designed to address this problem (see reviews in [1, 2]). 
They are based on gene fusion events [3, 4], 
conservation of gene-order or co-occurrence of genes in 
potential operons [5, 6], and presence/absence of genes 
in different species [7]. All these methods attempt to 
identify functionally associated genes (for example, 
involvement in the same biochemical pathway or similar 
gene regulation). However, they provide only a small 
coverage of direct physical interactions [8], which is 
more inherent to experimental approaches.  

In parallel to genomic context based developments, 
a number of computational methods that attempt to 
“learn” from experimental data of interacting proteins 
have been reported in the literature [9, 10]. Sprinzak and 
Margalit [10] tried to learn what typifies interacting  
protein pairs by analyzing over-representation of 

sequence-signature pairs derived from available 
experimental data of interacting proteins. Bock and 
Gough [9] attempted to learn correlations between 
biochemical patterns of sequence pairs derived from 
experimentally verified positive set and artificially 
manufactured “negative” set (a set of putative “non-
interacting” protein pairs).  

Protein Interaction Classification by Unlikely 
Profile Pair (PICUPP) - our proposed method - extracts 
protein interaction indicators from positive protein-
protein interaction data (no negative instances). It 
particularly seeks to identify correlated protein-profile 
pairs as indicators of protein-protein interactions. A 
profile describes a protein domain or family that may 
perform biologically important functions. Here 
“correlated” indicates that co-occurrence of the two 
given profiles accounts for an interaction. We 
particularly choose to use unusual protein profile pairs, 
which are derived from statistical simulation using 
interacting protein pairs, as such correlated pairs. A pair 
of profiles is then identified as a correlated pair, if its 
occurrence(s) in the data is statistically unusual relative 
to its occurrence generated by random (independent) 
protein pairings. Whenever the context is clear, we will 
use correlated and unusual interchangeably henceforth. 
The proposed approach is investigated with various 
protein profiles: Pfam domains [11], InterPro signatures 
[12] and Blocks motifs [13] using the Database of 
Interacting Protein (DIP) [14] of June 16, 2002.  
 
2. Methods 
 

A protein sequence is typically associated with 
multiple profiles. Thus each interacting protein pair may 
contribute to a number of profile pairs. A set of protein 
pairs creates a table, where each cell denoted by a row 
and column contains the frequency count of a profile 
pair. Note that it is different from an ordinary 
contingency table, because each protein pair would not 
contribute to exactly one cell of the table. Therefore 
significance analysis would not follow standard 
contingency table theory with a closed form solution 
[15].  Because of the non-standard setting of multiple 
cell contributions we evaluate significance by simulation.  
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Figure 1: Example count distributions of unusual 
(a) and usual (b) Pfam profile pairs. In each case, 
white bars and black bars represent dr and dp

distributions, respectively. X and Y axes 
represent count and its frequency. 

Figure 2: The sensitivity to protein interactions in 
DIP when PICUPP is trained with InterPro and 
Pfam respectively. In each figure, the sensitivities 
at confidence levels of 0.7 and 0.8 are shown to 
both positive (P) and randomly coupled (R) 
interactions.  
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The frequency counts in a profile pair table are 

random variables that are generated by the simulation. 
For each protein pair (prk, prl) in D, a set of profile pairs 
is identified by all pair-wise combinations of profiles 
between prk and prl. For example, let proteins prk and prl 
be associated with profiles (s1, s2) and (s3, s4), 
respectively. Then, any combination (si, sj)∈  (s1, s2) × 
(s3, s4), where × denotes Cartesian product operator, is 
identified as a profile pair. Since a meaningful 
evaluation of a random variable can only be made 
through its distribution, we bootstrap the table cell 
distributions by resampling the protein pair data D and 
computing many instances of tables: one from 
bootstrapped samples of the same protein interaction 
data and the other from bootstrapped samples of the 
random protein pairings. This provides two count 
samples for each cell of the table: an interacting pairs 
sample, cp, and a random pairs sample, cr. We denote the 
corresponding empirical count distribution as dp and dr, 
respectively. The amount of overlap between dp and dr 
determines the usualness of the pair compared to what is 
expected at random.  That is, PICUPP finds a profile pair 
(a cell in the table) to be unusual (or, correlated) if its 
frequency distribution constructed from interacting 
protein pair samples is significantly  different from  what   
 

 
 
 
 
 
 

 
is constructed from random protein pairings. 
Computationally, PICUPP only keeps track of the dp and 
dr distributions for non-zero counts. Technically, the 
confidence score, or the degree of correlation of a profile 
pair (si, sj) is computed from its two count distributions 
dp and dr as: 

 S(dp, dr) = maxa( )(
2

1
)(

2

1
aXPaXP pr ≥+≤  )    (1) 

where Xr and Xp are random variables of dp and dr, 
respectively. Given a set of identified unusual protein-
profile pairs, PICUPP determines a possible interaction 
between a pair of proteins (prk, prl), if any of its profile 
pair is unusual. An example of unusual and usual profile 
pair distribution is shown in Figure 1.   
 
3. Results  
 

PICUPP is modeled by comparing statistics of the 
given protein interaction pairs with those expected by 
random pairing of proteins. Therefore, it is expected to 
be sensitive to the positive protein interactions while 
being insensitive to those random protein couples. In this 
section, we report the sensitivity of PICUPP when 
InterPro and Pfam profiles are used over protein 
interactions in DIP database. We also discuss how 
different sizes of bootstrap samples and different 
confidence levels affect the overall performance. 

DIP database contains a rich set of protein 
interactions from several species.  From approximately 
17,000 total protein interactions, we selected proteins 
that have Swiss-Prot annotations. As a result, the 7,655 
and 6,652 protein interactions are left available for the 
experiment for cases with InterPro and Pfam, 
respectively. Figure 2 illustrates sensitivity to positive 
and randomly coupled interactions at the confidence 
levels of 0.7 and 0.8 with the different bootstrapped 
sample sizes. In both cases with (a) InterPro and (b) 
Pfam profiles, PICUPP shows high sensitivity to positive 
interactions, whereas low to randomly coupled protein 
pairs. With confidence of 80%, the sensitivity of 
PICUPP to positive interactions is around 82% (InterPro) 
and 75% (Pfam) from the simulation of size 1,000. On 
the other hand, it is around 17% (InterPro) and 13% 
(Pfam) to randomly coupled protein pairs. The result 
illustrates that PICUPP effectively identifies protein-
protein interactions.  

We also measured the performance of PICUPP 
when it is applied to a list of interacting protein pairs that 
is left out during the training stage. For this, we excluded 
all interactions of Yeast from DIP database and trained 
PICUPP. Then the sensitivity (or, accuracy) of PICUPP 
to the interacting protein pairs in Yeast was measured. 
Likewise,  the  sensitivity to  protein  pairs in  E-coli was  

 



         
 

   

Figure 3: Cross coverage of PICUPP. Sub-
figures (a),(b) and (c),(d) illustrate the 
sensitivities to yeast subset and E-coli when 
InterPro and Pfam are used. In each case, the 
solid line illustrates sensitivity to positive 
interactions at different threshold level, whereas 
dashed line illustrates sensitivity to randomly 
coupled interactions.  
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measured. Figure 3-(a) and (b) shows the sensitivity 
(coverage) of PICUPP to Yeast protein pairs in case of 
InterPro and Pfam, respectively. Similarly Figures 3-(c) 
and (d) show the coverage of E-coli protein pairs. As 
clearly illustrated in the Figures, PICUPP was able to 
differentiate interacting protein pairs from randomly 
coupled pairs in Yeast around 57% at confidence level of 
70%. However, it is around 20% for interacting pairs in 
E-coli at the same confidence level, which indicate the 
unusual profile pairs that typify interaction in E-coli 
were not found by the process and may be different from 
what are observed in the remaining data. This can be 
understood by the fact that DIP database is largely 
biased toward Eukaryotes. Although the bacterium 
Escherichia coli (E-coli) is the most dominant non-
eukaryote proteome in DIP database, it only accounts for 
1.3% of the proteins therein [9]. 
 
4. Discussion 
 

Approximately 108 pairs of Pfam domains are 
identified unusual at a confidence level of 98%. A case-
by-case investigation discovered many well-established 
Pfam-Pfam associations among these interactions.  The 
SH3 domain is perhaps the best-characterized member of 
protein-interaction modules. It plays a vital role in a 
wide variety of biological processes. It increases the 
local concentration or altering the subcellular 

localization of components of signaling pathways, and 
mediates the assembly of large multiprotein complexes 
[16].  The SH3 is found to be correlated with Actin in 
our analysis. In fact it has been verified that this domain 
is often closely associated with Actin (in cytoskeletal 
proteins, such as fodrin and yeast actincytoskeletal 
proteins, such as fodrin and yeast actin binding protein 
ABP-1 [17]).  

G-protein beta WD-40 repeat (G- ), another well- 
known interaction module, is one of the three subunits 
 ( , , and gamma) of the guanine nucleotide-binding 
proteins (G proteins) which act as intermediaries in the 
transduction of signals generated by transmembrane 
receptors.  The  subunit binds to and hydrolyzes GTP; 
the  and gamma subunits seem to be required for the 
replacement of GDP by GTP as well as for membrane 
anchoring and receptor recognition.  We found that this 
domain is highly coupled with Small nuclear 
ribonucleoprotein (sm protein) in our analysis.  This 
finding is consistent with previous research results [18].  
Both the sm proteins and G-  possibly mediate 
regulated protein-protein interactions essential for the 
functions of small nuclear ribonucleoproteins (snRNPs). 
Additional well-known Pfam pairs found in our 
prediction include actin and Cofilin/tropomyosin-type 
actin-binding protein [19], Protein kinase domain and 
Fibroblast growth factor [20], and EF hand and Myosin 
head (motor domain) [21]. 
 
5. Conclusion 
 

A statistical approach to identify correlated protein-
profile pairs that account for protein interactions is 
presented with experimental validation. We demonstrate 
that the proposed approach, PICUPP, effectively 
maximizes statistical confidences given to correlated 
protein-profile pairs by applying a bootstrapping 
approach to an incomplete data. We show that a set of 
unusual protein-profile pairs inferred from 
experimentally determined protein interactions can 
indeed epitomize putative protein-protein interactions. 
Such unusual protein-profile pairs reveal interacting 
domains and uncover relationships between highly 
correlated/uncorrelated domains for protein interactions.  

PICUPP needs to be further refined in several ways. 
First, its performance highly depends on the quality of 
the experimental data. Unfortunately genome-scale 
experimental methods, such as protein arrays and two-
hybrid system, have many limitations intrinsic to the 
experimental design. Another limitation, and even more 
restrictive, is the binary nature of some of those 
experimental approaches, which potentially excludes   
many of the cellular machines that are multi-protein 
complexes. Moreover, transient (short-living) protein 
complexes probably comprising a significant fraction of 
all regulatory interactions in the cell may need additional 



         
 

   

stabilization for detection by these experimental methods. 
Thus, expanding the training set with various types of 
annotated protein interactions will potentially address 
this problem. Second, an accurate understanding of 
interactions between protein profiles and how these 
interactions affect interactions between proteins is very 
limited. A possible solution may involve moving away 
from somewhat “ad hoc” utilization of protein profiles to 
more systematic approaches leading to a comprehensive 
understanding of relationships between interacting 
protein profiles and interacting proteins. 
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