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BCS superconductors

Conventional superconductivity: Smoking gun: Isotope effect

K. Omnes, Commun. Phys. Lab. (1911). E. Maxwell, Phys. Rev. (1950)
C.A. Reynolds et al., Phys. Rev. 78 (1950).
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Phonon mediated pairing

Attractive potential
k1 k2

k’2k’1

wD

Scattering of quasiparticles by phonons:

Chester: condensation energy      change in ion kinetic energy

Link:    Pairing           Electron - ion interaction

(Chester, Phys. Rev., (1956))
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Electronic sub-system

Kinetic energy increases upon pairing
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Cuprate superconductors

Yba2Cu3O7
Schematic phase-diagram
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Pairing Symmetry

--

BCS (conventional)
superconductors:

Local pairing induced
by phonons

Cuprate(unconventional)
superconductors:

STM near Zn impurity:
(S. Pan, Physics Today)

Pairing state has
s-wave symmetry

    Pairing state has
     d-wave symmetry
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Exchange-based Pairing?
Scalapino & White: AF spin-correlations important

Condensation energy      Change in exchange energy

(Scalapino & White, PRB, 1998)

Neutron scattering: Resonance peak accounts for Econd
(Dai et al., Science, 1999)
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Optical conductivity - Kinetic energy
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Intra- Inter-band transitions
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Optical conductivity:

Normal state

f-sum rule:

Ferrell-Glover-Tinkham
sum rule:

SC state

D d(w)

Kinetic energy:

K decreases

Kinetic energy      negative low frequency spectral weight
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Transfer of Spectral Weight in BSCCO
(H. Molegraaf, D. van der Marel, Science 2002)

Pairing driven by lowering 
of kinetic energy
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Cuprates - Strong Correlations

CuO2-plane 2D Hubbard model:
(Anderson, Zhang)

Cu O

U }

U>>t : tJ-model:
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Small Parameter?
BCS (conventional) SC:

Small parameter:

Electron-phonon vertex:

Neglect classes of diagrams:

Cuprate (unconventional) sc:
No small energy scale: 

But in Cuprates:

Thurston et al. (1989)

Short-ranged AF correlations
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Dynamical Cluster Approximation
Cluster (Nc degees of freedom)

Lattice (N degrees of freedom)

Map:
M(k)=K

kx

ky
Kx

Ky Short-ranged correlations with-
in the cluster treated exactly

Longer-ranged dynamics
described on mean-field level

Microscopic definition:

DCA
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DCA - Free Energy

F[G] = + + + …
U

G(k)

k4

k3

k2

k1 K1

K2

K3

K4

Free energy:

Reduction in complexity by coarse graining:
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DCA - Algorithm



15

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

DCA - t-J model

Non-local interaction:

Coarse-graining:

Bosonic field q(Q,w) via spin-susceptibility:

Self-consistency also on two-particle level
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Calculation of Energy densities

ß Kinetic energy:

ß Potential energy:

ß Exchange energy:
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DCA - Systematic in 1/Nc

Nc

Nc=1: DMFT
Local approximation:

Local dynamical
correlations included!

No nonlocal correlations!

Nc=4: DCA
Cluster approximation:

Correlations between 
nearest and n.n neighbors

Neglect of correlations on
length-scales > 1!

Nc=N: exact result
All length scales:

Possible correlations
on all length-scales
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Antiferromagnetism - Hubbard model

Inverse antiferromagnetic susceptibility

Parameters: U=W=8t=2

Nonlocal fluctuations
suppress ordering

TN(Nc=4) < TN(Nc=1)
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Pairing - Hubbard model
Parameters: U=W=8t=2, d=0.05
Pairfield susceptibility

ß s-wave

ß Extended s-wave

ß d-wave
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ky

kx

ky
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Pseudogap - Hubbard model

Parameters: U=W=8t=2
Density of states, spin susceptibility

Pseudogap in DOS and
spin excitations at low T
and doping.

Characteristic
temperature:

FL-behavior at high doping
recovered.
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Phase Diagram - Hubbard model
Parameters: U=W=8t=2
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Energetics - Hubbard model

Pairing driven by lowering of kinetic energy

Parameters: U=W=8t=2



23

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Pairing - t-J model
Parameters: J=0.5t=0.125 , d=0.16
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Energetics - t-J model

Pairing driven by lowering of exchange energy

Parameters: J=0.5t=0.125, d=0.16
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Magnetic susceptibility - t-J model
Parameters: J=0.5t=0.125, d=0.16
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Origin of kinetically driven pairing

Strong short-ranged
AF spin correlations

Quasiparticles in
antiferromagnetic background

(Brinkman '70, Hirsch '02)

Resonating valence bonds
(Anderson '87)

Quasiparticle-picture: Spin-charge separation:
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Quasiparticles in AF background
Motion of single hole:

Motion of paired holes:

Moving hole breaks AF bonds

Motion of single hole suppressed

Hole's kinetic energy increased

Second hole restores AF bonds

Kinetic energy lowered
upon pairing
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Resonating Valence Bonds

Elementary excitations:

Spinons: Spin 1/2, Charge 0 Fermions
           Paired spinons      Pseudogap

    increased kinetic energy

Holons: Spin 0, Charge e Bosons
    quasi-free

T<Tc: Quasiparticles are formed by
         recombination of spinons and

 holons
       Frustrated kinetic energy is

recovered
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Excitations - Hubbard model

Quasiparticles Spin Charge

Tc<T<T*: Spin excitations suppressed, charge more coherent
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Excitations T<Tc - Hubbard model

Quasiparticles Spin Charge

T< Tc : Spin & Charge qualitatively similar, gapped
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Summary, Conclusions & Outlook

ß Short-ranged AF correlations        DCA

ß Kinetic energy driven pairing in Hubbard model

ß Exchange energy driven pairing in t-J model

ß Exchange energy driven pairing in t-J model

ß Anomalous normal state and pairing consistent with RVB

ß Larger clusters
   Superconductivity? Spin-charge separation?

ß LDA + DCA        Material specific properties

ß Frustration         Gossamer superconductor?
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Larger Nc & Interplanar coupling
inverse AF susceptibility Neél temperature vs. Nc

ß 2D model

TN Æ 0 for Nc Æ •

consistent with Mermin-Wagner

ß Periodic array of Hubbard planes

stabilizes Antiferromagnetism
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Pairing & Interplanar coupling

Pairfield susceptibility for different Nc’s

Finite interplanar coupling

seems to stabilize transition
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QMC Sign Problem

DCA average sign Comparison DCA-FSS 

ß Sign problem still present in DCA
ß But less severe than in finite size system QMC calculations


