OSCAR Clusters

John Mugler, Thomas Naughton* and Stephen L. Scott!
Oak Ridge National Laboratory, Oak Ridge, TN

Brian Barrett! Andrew Lumsdaine and Jeffrey M. Squyres}
Indiana University, Bloomington, IN

Benoit des Ligneris, Francis Giraldeau¥
Université de Sherbrooke, Québec, Canada

Abstract

The Open Source Cluster Application Resources (OS-
CAR) is a cluster software stack providing a com-
plete infrastructure for cluster computing. The OS-
CAR project started in April 2000 with its first public
release a year later as a self-installing compilation of
“best practices” for high-performance classic Beowulf
cluster computing. Since its inception approximately
three years ago, OSCAR has matured to include clus-
ter installation, maintenance, and operation capabili-
ties and as a result has become one of the most popu-
lar cluster computing packages worldwide. In the past
year, OSCAR has begun to expand into other cluster
paradigms including Thin OSCAR, a diskless cluster so-
lution, and High-Availability OSCAR, embracing fault
tolerant capabilities. This paper will cover the current
status of OSCAR including its two latest invocations —
Thin OSCAR and High-Availability OSCAR — as well
as the details of the individual component technology
used in the creation of OSCAR.

1 Introduction

The growth of cluster computing in recent years has
primarily been fueled by the price performance quo-
tient. The hardware investment to obtain a supercom-
puter caliber system extends the capabilities to a much
broader audience. This advancement enables individ-

*Contact author: Thomas Naughton <naughtont@ornl.gov>

tThis work was supported by the U.S. Department of Energy,
under Contract DE-AC05-000R22725.

fSupported by a Department of Energy High Performance
Computer Science Fellowship.

§Supported by a grant from the Lilly Endowment.

TSupported by Centre de Calcul Scientifique

ISupported by Center for Entrepreneurship and Information
Technology (CEnIT), Louisiana Tech University

Chokchai Leangsuksun!
Louisiana Tech University, Ruston, LA

uals to have exclusive access to their own super com-
puter.

The capability of individual computing clusters in-
volves the well known exchange of hardware costs for
software costs. This software is necessary to build, con-
figure and maintain the ever growing number of dis-
tributed heterogeneous machines that make up these
clusters. The Open Cluster Group (OCG) was formed
to address cluster management needs. The first work-
ing group formed by OCG was the Open Source Cluster
Application Resources (OSCAR) project. The OSCAR
group began by pooling “best practice” techniques for
High Performance Computing (HPC) clusters into an
easy to use toolkit. This included the integration of
HPC components with a basic wizard to drive the in-
stallation and configuration.

The initial HPC oriented OSCAR has evolved with
the base cluster toolkit being distilled into a more gen-
eral cluster framework. The separation of the HPC spe-
cific aspects enables the framework to be used for other
cluster installation and management schemes. This
has led to the creation of two additional OCG working
groups that leverage the basic OSCAR framework. The
“Thin-OSCAR” working group uses the framework for
diskless clusters. The “HA-OSCAR” group is focusing
on high availability clusters. The relationship of OCG
working groups and the framework is depicted in Fig-
ure 1.

The following sections will briefly discuss the OCG
umbrella organization and the current working groups.
The basic OSCAR framework will be discussed followed
by a brief summary of the HPC specific components.
Then the diskless (Thin-OSCAR) and high availability
(HA-OSCAR) working groups will be covered followed
by concluding remarks.

Open Cluster Group

OSCAR
(HPC - disk based)

HA-OSCAR
(high availability)

Thin—-OSCAR
(diskless)

OPD
Reposito

Figure 1: The Open Cluster Group (OCG) working
groups share the OSCAR framework for cluster instal-
lation and management.

2 Background

The OSCAR working group was the first working group
that was formed under the umbrella Open Cluster
Group (OCGQG) organization. The OCG was formed af-
ter a handful of individuals met in April 2000 to dis-
cuss their forays into cluster construction and manage-
ment [1]. The consensus was that much effort was being
duplicated and a toolkit to assist with the integration
and configuration of current “best practices” would be
beneficial to the participants and the HPC community
in general.

This initial meeting led to subsequent discussions and
ultimately a public release of the cluster installation,
configuration, and management toolkit OSCAR v1.0 in
April 2001. This initial release addressed OCG’s mis-
sion statement to make cluster computing simpler while
making use of the commonly used open source software
solutions. In the years that have followed, the OSCAR
working group has enhanced the toolkit with features
such as modular OSCAR packages and improved clus-
ter management facilities.

The OSCAR project is comprised of a mixture of
industry and academic/research members. The over-
all project is directed by a steering committee that is
elected every two years from the current “core orga-
nizations”. This “core” list is composed of those ac-
tively contributing to project development. The 2003
core organizations include: Bald Guy Software (BGS),
Dell, IBM, Intel, MSC.Software, Indiana University,
the National Center for Supercomputing Applications
(NCSA), Oak Ridge National Laboratory (ORNL), and
Université de Sherbrooke.

There have also been new OCG working groups cre-
ated to address other cluster environments. These new
working groups are named “Thin-OSCAR” and “HA-

OSCAR”. The “Thin-OSCAR” project provides sup-
port for diskless clusters. The “HA-OSCAR” group
is focused on high availability clusters. The differ-
ent groups focus on different cluster environments but

leverage much of the core facilities offered by the base
OSCAR framework.

3 OSCAR Framework

The standard OSCAR release targets usage in a High
Performance Computing (HPC) environment. The
base OSCAR framework is not necessarily tied to HPC.
Currently the framework and toolkit are simply referred
to as OSCAR and are used to build HPC clusters. To
avoid confusion throughout this paper, a distinction
will be made by using OSCAR to refer to the entire
toolkit and OSCAR framework for the base facilities.

The framework includes the set of base or “core”
packages needed to build and maintain a cluster. There
are two other package classifications: “included” and
“third-party”. The included class of packages includes
commonly used HPC applications for OSCAR. These
packages are closely maintained and tested for compat-
ibility with each OSCAR release. The third-party dis-
tinction is provided for all other OSCAR, packages (see
Section 3.5).

The core components enable a user to construct a vir-
tual image of the target machine using System Instal-
lation Suite (SIS). There is also an OSCAR database
(ODA) that stores cluster information. The final two
components include a parallel distributed “shell” tool
set called C3 and an environment management facility
called Env-Switcher.

The fundamental function of OSCAR is to build and
maintain clusters. This is greatly comprised of software
package management. The guiding principle behind
OSCAR and OCG is to use “best practices” when avail-
able. Thus, the Red Hat Package Manager (RPM) [2]
is leveraged by OSCAR.! RPM files are pre-compiled
binary versions of the software with meta data that is
used to manage the addition, deletion, and upgrade of
the package. RPM handles the conflict and dependence
analysis. This add/delete/upgrade capability is a key
strength of RPM. This is made use of by the framework
in “OSCAR Packages”.

3.1

The System Installation Suite (SIS) is based on the well
known SystemImager tool [3, 4]. SystemImager is used

System Installation Suite

IThe underlying framework is designed to be as distribution
agnostic as possible. The RPM name is slightly misleading but
the system is available on distributions other than Red Hat.

to build an image — a directory tree that comprises an
entire filesystem for a machine — that is used to in-
stall cluster nodes. The suite has two additional com-
ponents: System Installer and System Configurator.
These two components extend the standard SystemIm-
ager to allow for a description of the target to be used
to build an image on the head node. This image has
certain aspects generalized for on-the-fly customization
via System Configurator. This dynamic configuration
phase enables the image to be more general so items
such as the network interface card are not in the SIS
image. This capability allows for heterogeneity within
the cluster nodes, while leveraging the established Sys-
temImager management model.

SIS is used to “bootstrap” the node installs — kernel
boot, disk partitioning, filesystem formatting, and base
OS installation. The image used during the installation
can also be used to maintain the cluster nodes. Mod-
ifying the image is as straight-forward as modifying a
local filesystem. Once the image is updated, rsync?
is used to update the local filesystem on the cluster
nodes. This method can be used to install and manage
an entire cluster, if desired. This image based cluster
management is especially useful for maintaining disk-
less clusters and is used by the Thin-OSCAR working
group, (see Section 5).

3.2 C3 Power Tools

The distributed nature of clusters introduces a need to
execute commands and exchange files throughout the
cluster. The Cluster, Command and Control (C3) tool
set offers a comprehensive set of commands to perform
parallel command execution across cluster(s) as well as
file scatter and gather operations [6, 7]. The tools are
useful at both administrative and user levels. The tool
set is the product of scalable systems research being
performed at ORNL [8].

C3 includes commands to execute (cexec) across the
entire cluster — or a subset of nodes — in parallel. File
scatter and gather (cpush/cget) operations are also
available. The C3 power tools have been developed to
span multiple clusters. This multi-cluster capability is
not fully harnessed by OSCAR currently but is avail-
able for administrators or standard users.

C3 is used internally throughout the OSCAR toolkit
to distribute files and perform parallel operations on
the cluster. For example, the user management com-
mands, e.g., useradd, are made cluster aware using the
C3 tools. Since C3 enables standard Linux commands
to be run in parallel, administrators can use the tools

2rsync is a tool to transfer files similar to rcp/scp [5].

to maintain clusters. A common example is the instal-
lation of a RPM on all nodes of the cluster, e.g.,

shell$ cexec rpm -ivh foo-1.0.1i386.rpm

3.3 Environment Switcher

Managing the shell environment — both at the
system-wide level as well as on a per-user ba-
sis — has historically been a daunting task. For
cluster-wide applications, system administrations typi-
cally need to provide custom, shell-defendant startup
scripts that, create and/or augment PATH, LD_-
LIBRARY PATH, and MANPAGE environment variables.
Alternatively, wusers could hand-edit their “dot”
files (e.g., $HOME/.profile, $HOME/.bashrc, and/or
$HOME/ . cshrc) to create/augment the environment as
necessary. Both approaches, while functional and work-
able, typically lead to human error — sometimes with
disastrous results, such as users being unable to login
due to errors in their “dot” files.

Instead of these models, OSCAR provides the env-
switcher OSCAR, package. env-switcher forms the ba-
sis for simplified environment management in OSCAR
clusters by providing a thin layer on top of the Environ-
ment Modules package [9, 10]. Environment Modules
provide an efficient, shell-agnostic method of manipu-
lating the environment. Basic primitives are provided
for actions such as: add a directory to a PATH-like envi-
ronment variables, displaying basic information about
a package, and setting arbitrary environment variables.
For example, a module file for setting up a given appli-
cation may include directives such as:

setenv FOO_OUTPUT $HOME/results
append-path PATH /opt/foo-1.2.3/bin
append-path MANPATH /opt/foo-1.2.3/man

The env-switcher package installs and configures the
base Modules package and creates two types of mod-
ules: those that are unconditionally loaded, and those
that are subject to system- and user-level defaults.
Many OSCAR packages use the unconditional mod-
ules to append the PATH, set arbitrary environment
variables, etc. Hence, all users automatically have
these settings applied to their environment (regardless
of their shell) and guarantee to have them executed
even when executing on remote nodes via rsh/ssh.
Other modules are optional, or a provide one-of-
many selection methodology between multiple equiv-
alent packages. This allows the system to provide
a default set of applications, that optionally can be
overridden by the user (without hand-editing “dot”
files). A common example in HPC clusters is hav-
ing multiple Message Passing Interface (MPI) [11, 12]

implementations installed. OSCAR installs both the
LAM/MPI [13] and MPICH [14] implementations of
MPI. Some users prefer one over the other, or have re-
quirements only met by one of them. Other users wish
to use both, switching between them frequently (per-
haps for performance comparisons).

The env-switcher package provides trivial syntax for a
user to select which MPI package to use. The switcher
command is used to select which modules are loaded
at shell initialization time. For example, the following
command shows a user selecting to use LAM/MPI:

shell$ switcher mpi = lam-6.5.9

3.4 OSCAR Database

The OSCAR database, or ODA, is used to describe
the software in an OSCAR cluster. As of OSCAR ver-
sion 2.2.1, ODA has seven tables in a MySQL database
named oscar which runs on the head node. Every OS-
CAR package has an XML meta file named config.xml
that is used to populate the package database. This
XML file contains a description of the package, and
the RPM names associated with the package. Thus the
database enables a user to find information on packages
quickly and easily.

ODA provides a command line interface into the
database via the oda command. This offers easier ac-
cess into the database without having to use a MySQL
client. ODA also provides an abstraction layer between
the user and the actual backing store method. The in-
ternal organization of data is masked through the use
of a uniform interface irrespective of this underlying
database engine. The retrieval and update of cluster
information is aided by the use of ODA “shortcuts” to
assist with common tasks.

ODA is intended to provide OSCAR package devel-
opers with a central repository for information about
the installed cluster. This alleviates the problem of ev-
ery package developer having to keep an independent
data store, and makes the addition and removal of pack-
ages easier.

3.5 OSCAR Packages

An OSCAR package is a simple way to wrap software
and a given configuration for a cluster. The most basic
OSCAR package is an RPM in the appropriate location
in the package directory structure. The modularity of
this facility allows for easy addition of new software
to the framework. OSCAR packages are most useful,
however, when they also provide supplemental docu-
mentation and a meta file describing the package. The
packaging API provides authors the ability to make use

of scripts to configure the cluster software outside of
the RPM itself. The scripts fire at different stages of
the installation process and test scripts can be added
to verify the process. Additionally, an OSCAR Pack-
age Downloader (OPD) (see Section 3.6) is provided to
simplify acquisition of new packages.

With this modular design, packages can be updated
independently of the core utilities and core packages.
The OSCAR toolkit is freely redistributable and there-
fore requires all “selected” packages to adhere to this
constraint. However, any software which does not fulfill
this requirement can be made available via an OSCAR
repository with access via OPD.

The contents and directory structure of a typical OS-
CAR package are listed below. For further details on
the creation of packages for the toolkit, see the OS-
CAR Architecture document in the development repos-
itory [15].

config.xml — meta file with description, version, etc.

RPMS/ - directory containing binary RPM(s) for the
package

SRPMS/ — directory containing source RPM(s) used to
build the package

scripts/ — set of scripts that run at particular times
during the installation/configuration of the cluster

testing/ — unit test scripts for the package

doc/ — documentation and/or license information

3.6 OSCAR Package Downloader

The OSCAR Package Downloader (OPD) provides the
capability to download and install OSCAR software
from remote package repositories. A package reposi-
tory is simply an FTP or web site. Given the ubiquitous
access to FTP and web servers, any organization can
host their own OSCAR package repository and publish
their packages on it. There is no central repository;
the OPD network was designed to be distributed such
that no central authority is required to publish OSCAR
packages. Although the OPD client program downloads
an initial list of repositories from the OSCAR Working
Group web site,? arbitrary repository sites can be listed
on the OPD command line.

Since package repositories are FTP or web sites, any
traditional FTP client or web browser can also be used
to obtain OSCAR packages. Most users prefer to use

3The centralized repository list is maintained by the OSCAR
working group. Upon request, the list maintainers will add most
repository sites.

the OPD client itself, however, because it provides ad-
ditional functionality over that provided by traditional
clients. OPD offers two interfaces: a simple menu-based
mechanism suitable for interactive use and a command-
line interface suitable for use by higher-level tools (or
automated scripts).

Partially inspired by the Comprehensive Perl Archive
Network (CPAN), OPD provides the following high-
level capabilities:

e Automating access to a central list of repositories

e Browsing packages available at each repository

Providing detailed information about packages
e Downloading, verifying, and extracting packages

While the job that OPD performs is actually fairly sim-
ple and could be performed manually, having an au-
tomated tool for these functions provides ease of use
for the end-user, performs multiple checks to ensure
that downloaded and extracted properly, and lays the
groundwork for higher-level OSCAR package/retrieval
tools.

4 OSCAR Toolkit

The integration of common HPC packages is a key fea-
ture of the OSCAR toolkit. The focus of this paper is
to talk about the framework, however, and its use by
the various OCG working groups. A brief highlight of
the packages is provided with further details available
in other articles [16, 17].

The “selected” packages that are included enable a
user to install and configure the head node and cluster
nodes to run HPC applications. These HPC packages
include parallel libraries like LAM/MPI, MPICH and
PVM. A batch queue system and scheduler — OpenPBS
and MAUI —is included and setup with a reasonable set
of defaults. The toolkit sets up common cluster services
such as Network File System (NFS) and Network Time
Protocol (NTP). Security packages like Pfilter [18] are
setup as well as OpenSSH with non-interactive access to
all nodes in the cluster from the head node. The testing
scripts provided with the packages are executed by the
OSCAR framework to validate the cluster installation.

5 Thin-OSCAR

5.1 Goals

Thin-OSCAR * is a workgroup dedicated to integrate
diskless clustering techniques into OSCAR so that the

4Workgroup web site : http://thin-oscar.ccs.usherbrooke.ca/

OSCAR infrastructure can use diskless nodes. There
are three class of nodes in the thin-OSCAR perspec-
tive : diskless, systemless (a disk is present in the node
but there is no operating system on the disk) and disk-
full (regular OSCAR node with disk). At the time of
this writing, only diskless and diskfull nodes are sup-
ported out of the box. Systemless nodes are supported
to some extent but you will have to fiddle with some
config files manually. Moreover, a generic abstraction
of a node is necessary to build a generic but compre-
hensive interface.

5.2 Principle of operation

The thin-OSCAR model is the following : the thin-
OSCAR package is a collection of Perl scripts and li-
braries that are used to transform a regular SIS image
(as used by OSCAR) into the two ram disks necessary
for diskless and systemless nodes. The first ram disk
to be transferred is called the “BOOT image” and is
used in order to ensure that the node has network con-
nectivity, NFS client capabilities and to create a raid0
array of ram disk [19]. Once this minimal image (less
than 4Mb) has booted, the RUN image from the second
ram disk can be transferred. The RUN image is build
directly from the SIS image and contains the complete
system that will run on the node. Some directories are
copied from the SIS image while others are NFS ex-
ports (read-only) directly exported from the SIS image
directory [20].

In order to build the BOOT image, you will need
the SIS image name, modules name to integrate into
this ram disk as well as the modules used by your NIC
adapter and the kernel version you want to use. The use
of the root raid in ram technique is necessary because
one of the thin-OSCAR goals is to support the regular
kernel (only 4 Mb or ramdisk) without recompilation.

5.3 mini howto

In order to download thin-OSCAR, please use Oscar
Package Downloader and select the Université de Sher-
brooke repository. Then download thin-OSCAR. Be-
fore actually using thin-OSCAR, you have to complete
a regular installation from stage 1 (selection of pack-
ages) to stage 6 (setup networking). Assign nodes IP to
MAC addresses and don’t forget to click on the “Setup
Network Boot” button.

Once this is done, you are ready to
use the thin-OSCAR package. Go to
/usr/lib/oscar/packages/thin-oscar/ and run

the ./oscar2thin.pl script. You will go into an
interface where you will have to define your diskless
model, link the model to an OSCAR node and then

generate all the necessary ram disk (Configure All).
Once this is done, you are finished and can reboot
all the diskless nodes. You must know which kernel
modules are necessary for your NIC before starting
this process in order to setup network connectivity.

5.4 thin-OSCAR future

We will certainly move to a more modern RAM filesys-
tem (tmpfs) as it is now available on regular kernels and
toward an automatic detection of NIC modules so that
BOOT ramdisk creation can be fully automated. Mul-
ticast transfer of the ramdisk is under study as it will
shorten the boot time and the network usage during
boot (especially for big clusters!).

The proof of concept of the thin-OSCAR has been
done and, at the time of this writing, thin-OSCAR is
used on a 180 node production diskless cluster [21]. An
improved integration into the OSCAR framework is un-
der development and will be available as soon as the
OSCAR GUI enables it.

6 HA-OSCAR

High-Availability (HA) computing, once thought as
only important to industry applications such as
telecommunications, has become critically important to
the fundamental mission of high-performance comput-
ing. This is because very large and complex application
codes are being run on increasingly larger scale dis-
tributed computing environments. Since COTS (com-
mon off the shelf) hardware is typically employed to
construct these environments (clusters), quite often the
application code’s runtime exceeds the hardware’s ag-
gregated mean-time-between-failure rate for the entire
cluster. Thus, in order to efficiently run these very large
and complex applications, high-availability computing
techniques must be employed in the high-performance
computing environment (HPC).

The current HPC release of OSCAR is fully suit-
able for mission critical systems as it contains sev-
eral individual system elements that exhibit a single-
point-of-failure trait. In order to support HA require-
ments, clustered systems must provide ways to elim-
inate single-point-of-failures. HA-OSCAR is a focus
group with goals to add HA features to the original
HPC OSCAR distribution. While HA-OSCAR is still
a work in progress, the scope of this effort has been de-
fined into three incremental steps; the creation of the
HA-OSCAR white-paper [22], Active-Hot-Standby, and
n + 1 Active-Active distributions.

Hardware duplication and network redundancy are
common techniques utilized for improving the reliabil-

ity and availability of computer systems. To achieve the
HA-OSCAR cluster system, we must first provide a du-
plication of the cluster head node. There are different
ways for implementing such an architecture, which in-
cludes Active-Active, Active-Hot Standby and Active-
Cold Standby [23]. Currently, the Active-Hot Standby
configuration is the initial model of choice. Figure 2
shows the HA-OSCAR cluster system architecture. We
have experimented with and planned to incorporated
Linux Virtual Server and Heartbeat mechanisms to our
initial Active- Hot Standby HA-OSCAR distribution.
However, we will extend the initial architecture to sup-
port the Active-Active HA after release of the Hot-
Standby distribution. The Active-Active architecture
will provide a better resource utilization since both
head nodes will be simultaneously active and provid-
ing services. The dual master nodes will run redundant
OpenPBS, MAUI, DHCP, NTP, TFTP, NFS, rsync and
SNMP servers. In the event of a head node outage, all
functions provided by that node will fail-over to the
second redundant head node and all service requests
will continue to be served, although at a reduced per-
formance rate (i.e. in theory, 50% at the peak or busy
hours).

An additional HA functionality to support in HA-
OSCAR is that of providing a high- availability network
via redundant Ethernet ports on every machine in ad-
dition to duplicate switching fabrics (network switches,
cables, etc.) for the entire network configuration. This
will enable every node in the cluster to be present on
two or more data paths within its networks. Backed
with this Ethernet redundancy, the cluster will achieve
higher network availability. Furthermore, when both
networks are up, an improved communication perfor-
mance may be achieved by using techniques such as
channel bonding of messages across the redundant com-
munication paths.

7 Conclusion

The Open Cluster Group (OCG) has formed several
working groups focused on improving cluster comput-
ing management. The first working group, OSCAR,
has evolved over time as has the toolkit by the same
name. The OSCAR toolkit has also been distilled in
order to allow for more general usage. This more gen-
eral OSCAR framework is being leveraged by subse-
quent working groups seeking to extend support for
new cluster environments. These new environments in-
clude the areas of diskless and high availability clus-
ters. These are being pursued by the Thin-OSCAR
and HA-OSCAR working groups respectively. These
OCG working groups are providing the cluster com-

O w=0

Active Node Hot Standby :

redundant recovery

Heart beat |ink

o8

Dual

RAI D (NAS
Channel

or SAN)
a

[}

Channel

Switchl :

. Switch2 :
private network

private net wor k

e —

O smmO

=

Cient 2

dient 1 dient N

Figure 2: Diagram of HA-OSCAR architecture.

munity with sound tools to simplify and speed cluster
installation and management.

References
[1] Richard Ferri. The OSCAR revolu-
tion. Linuz Journal, (98), June 2002.

http://www .linuxjournal.com/article.php?sid=5559.

Edward C. Bailey. Mazimum RPM: Taking the
Red Hat Package Manager to the Limit. Red Hat
Software, Inc., 1998.

Sean Dague. System Installation Suite Massive In-
stallation for Linux. In The 4** Annual Ottawa
Linuz Symposium (OLS’02), Ottawa, Canada,
June 26-29, 2002.

System Installation Suite (SIS),
http://www.sisuite.org/.

A. Tridgell and P. Mackerras. The rsync
algorithm. Technical Report TR-CS-96-
05, Australian National University, De-
partment of Computer Science, June 1996.

(see also: http://rsync.samba.org/).

M. Brim, R. Flanery, A. Geist, B. Luethke, and
S. Scott. Cluster Command & Control (C3) tools
suite. In To be published in, Parallel and Dis-
tributed Computing Practices, DAPSYS Special
Edition, 2002.

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Cluster Command & Control (C3) Power Tools,
http://www.csm.ornl.gov/torc/C3.

Al Geist et al. Scalable Systems Software
Enabling Technology Center, March 7, 2001.
http://www.csm.ornl.gov/scidac/ScalableSystems/.

John L. Furlani. Modules: Providing a flexi-
ble user environment. In Proceedings of the Fifth
Large Installation Systems Administration Confer-
ence (LISA V), pages 141-152, San Diego, CA,
September 1991. http://modules.sourceforge.net/.

John L. Furlani and Peter W. Osel. Abstract your-
self with modules. In Proceedings of the Tenth
Large Installation Systems Administration Con-
ference (LISA ’96), pages 193-204, Chicago, IL,
September 1996. http://modules.sourceforge.net/.

Al Geist, William Gropp, Steve Huss-Lederman,
Andrew Lumsdaine, Ewing Lusk, William Saphir,
Tony Skjellum, and Marc Snir. MPI-2: Ex-
tending the Message-Passing Interface. In Luc
Bouge, Pierre Fraigniaud, Anne Mignotte, and
Yves Robert, editors, Furo-Par '96 Parallel Pro-
cessing, number 1123 in Lecture Notes in Com-
puter Science, pages 128-135. Springer Verlag,
1996.

Message Passing Interface Forum. MPI: A Mes-
sage Passing Interface. In Proc. of Supercomputing
93, pages 878—883. IEEE Computer Society Press,
November 1993.

Greg Burns, Raja Daoud, and James Vaigl. LAM:
An Open Cluster Environment for MPI. In
John W. Ross, editor, Proceedings of Supercom-
puting Symposium 94, pages 379-386. University
of Toronto, 1994.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel
Computing, 22(6):789-828, September 1996.

Open Cluster Group: OSCAR Working
Group. OSCAR: A packaged cluster soft-
ware for High Performance Computing.

http://www.OpenClusterGroup.org/OSCAR.

Thomas Naughton, Stephen L. Scott, Brian Bar-
rett, Jeff Squyres, Andrew Lumsdaine, and Yung-
Chin Fang. The Penguin in the Pail - OSCAR
Cluster Installation Tool. In Proceedings of SCI’02:
Invited Session — Commodity, High Performance
Cluster Computing Technologies and Applications,
Orlando, FL, USA, 2002.

[17]

[19]

[22]

[23]

Benoit des Ligneris, Stephen L. Scott, Thomas
Naughton, and Neil Gorsuch. Open Source Cluster
Application Resources (OSCAR) : design, imple-
mentation and interest for the [computer] scientific
community. In Proceeding of 17" Annual Interna-
tional Symposium on High Performance Comput-
ing Systems and Applications (HPCS 2003), pages
241-246, Sherbrooke, Canada, May 11-14, 2003.

Neil Gorsuch. PFILTER in OSCAR - Industrial
Strength Cluster Firewalls in an Open Source En-
vironment. In Proceeding of 1°¢ Annual OSCAR
Symposium (OSCAR 2003), Sherbrooke, Canada,
May 11-14, 2003.

Mehdi Bozzo-Rey, Michel Barrette, Benoit des
Ligneris, and Francis Giraldeau. Root raid in ram
how to. In Proceeding of 171" Annual International
Symposium on High Performance Computing Sys-
tems and Applications (HPCS 2003), pages 241—
246, Sherbrooke, Canada, May 11-14, 2003.

Benoit des Ligneris, Michel Barrette, Francis Gi-
raldeau, and Michel Dagenais. Thin-OSCAR : De-
sign and future implementation. In Proceeding of
158 Annual OSCAR Symposium (OSCAR 2003),
pages 261-265, May 11-14, 2003.

M. Barrette, X. Barnabé-Thériault, M. Bozzo-Rey,
C. Gauthier, F. Giraldeau, B. des Ligneris, J.-P.
Turcotte, P. Vachon, and A. Veilleux. Develop-
ment, installation and maintenance of Elix-II, a
180 nodes diskless cluster running thin-oscar. In
Proceeding of 1°¢ Annual OSCAR Symposium (OS-
CAR 2003), pages 267-271, May 11-14, 2003.

I. Haddad, F. Rossi, C. Leangsuksun, and S. L.
Scott. Telecom/High Availability OSCAR, Sug-
gestions for the 27? Generation OSCAR. Tech-
nical Report TR-LTU-12-2002-01, Louisiana Tech
University, Computer Science Program, December
2002.

P. S. Weygant. Cluster for high availability: A
Primer of HP solutions. Hewlett-Packard Com-
pany, Prentice-Hall, Inc., second edition, 2001.

