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Overview

* (Questions and research 1ssues in meso- and nanoscale

photonics
— what are the scientific and technological payoffs?!

* Polymer-based meso and nanostructures for photonics
— Photonic “molecules” and “polymers”

— Polymer quantum rods

 What does the future hold ....



The future of photonics....

*Optical computing and information processing -
*Spatial photon manipulation capability
— (high density requirements imply subdiffraction-limit length scales)
*Frequency selection/manipulation capability
— (wavelength division multiplexing, add-drop filters, etc.)
*Nonlinear / active “devices”
— (transistors, gates, etc.)
«““Circuit” integration

*Molecular scale optoelectronics -
- optical (wireless) interface to molecular scale electronic circuits
» tatlored/multiplexed electro-optic response to a far-field optical input
e electronic coupling??
— MATERIALS ....



Polymer-composite micro and nanopatrticles from
solution - A new approach to nanoscale composites
with tunable properties

e Nearly arbitrary size and
composition
e Defined by droplet size and polymer

concentration

e Tunable properties

e Suppression of phase-separation for
small droplets

o Ultra-trace dopant capability

e Single-molecules, rare-earth ions, etc.

M. D. Barnes, et al. Materials Today, 2 (3), 25-28 (1999)




Electrodynamic particle focusing and manipulation

9.5 ym PEG (10 k MW) particles on silanated glass slides.
droplet generator Center-to-center spacing is 40 um/ 40x phase-contrast objective
(15 pum init. diam., 2 - 5 Hz) with Nomarski DIC optics.
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M. D. Barnes, et al. Rev. Sci. Instrum 71, 2497 (2000)



Molecular Opto-electronics:
Marriage of photons and nanoscale electronics

Challenges

" « Materials? Design issues are daunting - need well-
defined color (transition energies), position, orientation,
as well as photon-modulated charge-transport properties

* Coupling with other nanoelectronic elements?

—  Sub-diffraction limit spatial addressibility?

Benefits :
» Wireless interface strategy, large “optical toolbox”,
multiplexing, etc.



Semiconducting Polymers:
The ideal material for nanoscale optoelectronics?
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Emission Pattern Imaging: Probing Orientation and Chain-

Organization of Semiconducting Polzmer Nanoparticles

A. Bartko and R. M. Dickson J. Phys. Chem. B 103, 11238 (1999)

L1238 J. Phys, Chem. B, Vol 103, Moo 51, 1959
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* Schematic of dipole emission pattern » Reference patterns from single Dil molecules in
imaging apparatus: Laser light is brought in a polymer thin-film. Single dipoles oriented in the
off-axis to produce TIR at sample plane. XY plane produce a characteristic “batwing”
PZ-controlled objective produces emission pattern, while much rarer Z-oriented molecules
patterns containing 3D orientation produce “donut” shaped pattern

information



Combining Atomic Force Microscopy and Fluorescence
Microscopy/Spectroscopy of Single lons/Nanoparticles

*AFM surface imaging of
particles above cover-slip

*High-NA optical imaging and
spectroscopy using inverted
geometry

*Register relative position of
cantilever and laser spot with 2-
um pinhole or fluorescent
nanoparticles
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Semiconducting Polymers: Probing single-molecule
chain organization and orientation in thin films

Fluorescence of single MEH-PPV molecules
under 400x magnification

Random caoil

The bad news: random, disordered chain

structure; poor photostabilty and charge-
transport properties, in-plane orientation
in thin-films are “short-circuited” for
photonics applications!



Polymer-based nanostructures for nanophotonics: Z-oriented
nanoparticles of a semiconducting polymer via ink-jet printing

« Uniformly (to within < 10%) Z-
oriented nanoparticles

* Particle structure? - single dipole
pattern suggests high-degree of

' ) internal order
P. Kumar, A. Mehta, et al. “Oriented Semiconductor Polymer Nanorods”

submitted to Science (pending Editorial decision)



Luminescence dynamics of oriented MEH-PPYV particles
L

QuickTime™ and a
Animation decompressor
are needed to see this picture.

*Multiple intensity
levels, on-off blinking

- similar to observations
with single (inorganic) g-
dots/single molecules

 Note orientational
instabilities (relative to
lower pump power)!



Orientational and luminescence dynamics of

MEH-PPV nanoparticles

Detected counts per frame (7 x 7 pixel integration)

AFM scan (particle
heights in nm)
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Fluorescence image
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Particle heights from AFM in
good agreement with MEH-PPV
persistence length (= 10
monomer units)

*Orientational instability related
to pump intensity - oxidation of
vinylene linkages cause a
“wobbling” of the nanorod



Single-molecule polarization anisotropy measurements
as a structural probe in thin-film geometries
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Thin film preparations result in broad
P. F. Barbara, et al. “Collapse of stiff conjugated polymers with . . . .
P e PoY Distribution of relatively poorly

chemical defects into ordered cylindrical conformations,” Nature
405 1030 (2000) ordered chain structures !



Probing polarization anisotropy in z-oriented nanoparticles

L1238 J. Phys, Chem. B, Vol fﬂﬂ.ﬁﬂ- 51, 19

QuickTime™ and a
Animation decompressor
are needed to see this picture.

M= —— Modulate z-component in
I+ 1g excitation field by rotating input
polarization between P and S



Probing structural order in z-oriented nanoparticles

50x10 3 background reference
—+— z-oriented nanoparticle
40 — <M2>=0.896
<M1>=O'879 ............ (0‘853)
<M3>=10.843

”””””””” (0.876)
" 30 — (0.845)
=
=]
o
o
B
= 20
2
g

10 —
.;k L + L
0 o= AN AN AN U
~ \/ NV
I I I I I I I
0 5 10 15 20 25 30

frame number (5 sec. exposure)

-

cos0 - sinO

M =

cosO + sinO



Polarization anisotropy evidence for a nanocrystalline
phase of a semiconducting polymer
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Observation of quantum-dot like spectroscopic properties
of Z-oriented MEH-PPVnanoparticles

Bulk MEH-PPV (soln.)
and single-molecule (film)
*,

Z-oriented nanoparticles
7.4,9.1, and 12.2 nm (left to

580 590 600 610 620 630
wavelength (nm)

* Observation of quantum-dot like spectral
signatures in z-oriented polymer nanoparticles

« Observe narrow (10-15 nm fwhm) emission
spectra from individual nanoparticles

*Center frequency is stable (no spectral
diffusion) for a given particle

*Observe many different “colors” that are only
weakly correlated with particle size
What’s going on?

*Exciton delocalization - subvolume or whole
particle?

*LUMO structure - related to “crystallinity”




Distribution of PLE center frequencies -
correlation with integer conjugation lengths
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- Emission frequencies correlated with discrete confinement (box)
lengths (R. Chang, et al. Chem. Phys. Lett 317, 142 (2000)



Mechanism behind discrete center frequency probability
distribution ? Emissive state 1s NOT necessarily lowest energy!
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Emission frequencies correlated with discrete

confinement (box) lengths - but not strongly correlated

with size!

Observations:
*Emission frequency is
fixed, but different for
cach particle

*Emission frequency
correlated not with ‘box
size but with oligomer
length

*Possibly due to local
LUMO lowering due to
structural order

9



What’s next?

* Controlled deposition of oriented
polymer nanorods on conducting
surfaces, microcavities

*Single-photon source?

particle injection into
hollow-core fiber from
nebulized polymer solution

piezo-electrically
controlled x-y positioning
:' for determinsitic particle

deposition — /I‘]

* Probe optically modulated STM
conductivity of z-oriented (anode)
nanoparticles using STM (or

modified AFM) probe



Electronic structure and quantum transport in polymers

Molecular Structure Quantum Transport
* Structure of the polymer nanorod? Conductance for charge transport
—Electric coupling between conjugated through polymer (w/ realistic leads).
segments?

* Field modulated electron transport

—Solvation of chromophors?
— Static fields

*Role of electron correlation in photo

emission? — AC fields, Photon-assisted transport.
e Effect of DC and AC fields on * Mobility of charge carriers between
structure? conjugated segments?
* Charge delocalization in polymer * Methods:
crystal? — Nonlinear transport theory.
* Methods: — Time-dependent transport in DC+AC fields.
—DFT, Quantum Chemistry — Role of leads and contacts (structure,
—Refine exchange-correlation functional contact geometry).

via comparison with experiment.




Summary and Conclusions:

*Photonic polymers
*Observed coupled resonances in fluorescence -
characteristic mode splitting of a nearly degenerate system
Identified 3d classical trajectories corresponding to
coupled resonances

*New technique for nanoscale processing of semiconducting
polymers with a number of remarkable properties:
*Photostability
*Polarization
*Structural
*Spectroscopic

o... and we’ve just scratched the surface!
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