
Availability Prediction and Modeling of High Availability OSCAR Cluster

Chokchai Leangsuksun1, Lixin Shen
Tong Liu, Hertong Song

Computer Science
Louisiana Tech University

Ruston, LA 71272, USA
{box, lsh007, tli001,hso001}@latech.edu

Stephen L. Scott2

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA
scottsl@ornl.gov

Abstract

Since the initial introduction of Open Source Cluster
Application Resources (OSCAR), this software package
has been a well-accepted choice for building high
performance computing systems. As it continues to be
applied to mission-critical environments, high availability
(HA) features therefore are needed to be included in
OSCAR cluster. In this paper, we provide a HA solution
for OSCAR cluster. As a widely used technique in HA
solutions, component redundancy is adopted to improve
the system availability. Based on the proposed
architecture, we develop a detailed failure-repair model
for predicting the availability of HA OSCAR cluster.
Stochastic reward nets (SRN) are used to model the
behavior of the system. We specify our SRN model to
Stochastic Petri Net Package, describe and compute
several interesting output measures that characterize
availability features of HA OSCAR cluster.

1. Introduction12

As an enormous computational power for the
scientific, commercial, and educational communities,
clusters are becoming increasingly cost effective and
popular [1] [2]. Open Source Cluster Application
Resources (OSCAR) is a fully integrated bundle of
software designed for building, maintaining, and using a
Linux cluster for high performance computing (HPC) [3]
[4] [5]. Since the initial introduction of OSCAR, this
software package has become a well-accepted choice for

1Research supported by Center for Entrepreneurship and Information
Technology, Louisiana Tech University.
2Research supported by the Mathematics, Information and
Computational Sciences Office, Office of Advanced Scientific
Computing Research, Office of Science, U. S. Department of Energy,
under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

building HPC clusters. As cluster computing systems
continue to be applied to mission-critical environments,
high availability (HA) features are therefore required to
be included in OSCAR cluster.

The current OSCAR cluster suffers from several single
point of failure. The failure rates of some key components
dominate the availability of the entire system. In order to
improve the system availability, component redundancy is
adopted in HA OSCAR cluster to eliminate the single
point of failure. First, a standby server is introduced as a
duplication to take over the control of the cluster from the
primary server when it is failed. A communication feature
with heartbeat mechanism is applied as health detection
between the two servers. Second, redundant network
connection provides an alternative communication path in
the case of network card, wire or switch failure happens.
Last, a quorum voting mechanism is used for the multiple
clients. Component redundancy will significantly improve
the system availability [6] [7].

Availability analysis and modeling of the HA OSCAR
cluster can predict the availability measures in the design
stage and help us to determine the range of parameters so
that the system availability goal will be met. Stochastic
reward nets (SRN) have been successfully used in the
availability evaluation and prediction for complicated
systems, especially when the time-dependent behavior is
of great interest [8]. We apply SRN for aiding in the
automated generation and solution of the underlying large
and complex Markov chains. The Stochastic Petri Net
Package (SPNP) [9] allows the specification of SRN
models and the computation of steady and transient-state.
We utilize SPNP to build and solve our SRN model.

In this paper, we provide a HA solution for OSCAR
cluster. Based on the system architecture, we use SRN to
develop a detailed failure-repair behavior model for the
system. Several interesting output measures that
characterize the availability features of the system are
described and computed. The use of the model in studying
various alternative configurations of the HA OSCAR

cluster is also illustrated. The architecture and mechanism
of the HA OSCAR cluster will be described in section 2.
In section 3, we will develop the SRN model
corresponding to the system. The behavior of servers,
network connections, and clients will be discussed in
detail. In section 4, we will provide some numerical
results obtained from the model. Finally, conclusions will
be presented in section 5.

2. System architecture and mechanism

The hardware configuration of HA OSCAR cluster is
shown in Figure 1. The system consists of a primary
server, a standby server, two LAN connections, and
multiple clients, where all the clients have homogeneous
hardware. A server is responsible for serving user’s
requests and distributing the requests to specified clients.
A client is dedicated to computation [10]. Each server has
three network interface cards, one is connected to the
Internet by a public network address, and the other two
are connected to a private LAN, which consists of a
primary Ethernet LAN and a standby LAN. Each LAN
consists of network interface cards, switch, and network
wires, and provides communication between servers and
clients, and also between the primary server and the
standby server.

Figure 1. Architecture of the HA OSCAR cluster

Initially, every component in the cluster is functioning.
The primary server provides the services and processes all
the user’s requests. The standby server activates its
services and waits for taking over the primary server
when its failure is detected. The periodical transmission
of heartbeat messages travels across the Ethernet LAN
between the two servers, and works as health detection of
the primary server [11]. When a primary server failure
occurs, the heartbeat detection on the standby server
cannot receive any response message from the primary

server. After a prescribed time, the standby server takes
over the alias IP address of the primary server, and the
control of the cluster transfers from the primary server to
the standby server. The user’s requests are processed on
the standby server from later on. From the user’s point of
view, the transfer is almost seamless except the short
prescribed time. The failed primary server gets repaired
after the standby server taking over the control. Once the
repair is completed, the primary server activates the
services, takes over the alias IP address, and begins to
process user’s requests. The standby server releases its
alias IP address and goes back to initial state.

At regular interval, the running server polls all the
LAN components specified in the cluster configuration
file, including the primary LAN cards, the standby LAN
cards, and the switches. Network connection failures are
detected in the following manner. The standby LAN
interface is assigned to be the poller. The polling interface
sends packet messages to all other interfaces on the LAN
and receives packets back from all other interfaces on the
LAN. If an interface cannot receive or send a message,
the numerical count of packets sent and received on an
interface does not increment for an amount of time. At
this time, the interface is considered down [12]. When the
primary LAN goes down, the standby LAN takes over the
network connection. When the primary LAN gets
repaired, it takes over the connection back from the
standby LAN.
 Whenever a client fails or gets repaired and the cluster
is functioning, then the cluster undergoes a
reconfiguration to remove the corresponding client from
or admit the client into the cluster. This process is referred
to as a cluster state transition. The HA OSCAR cluster
uses a quorum voting scheme to keep the system
performance requirement, where the quorum Q is the
minimum number of functioning clients required for a
HPC system. We consider a system with N clients, and
assume that each client is assigned one vote. The
minimum number of votes required for a quorum is given
by (N+2)/2 [13]. Whenever the total number of the votes
contributed by all the functioning clients falls below the
quorum value, the system suspends operation. Upon the
availability of sufficient number of clients to satisfy the
quorum, a cluster resumption process takes place, and
brings the system back to operational state.

3. System model

We divide the system behavior model into server
submodel, network connection submodel and client
submodel. A brief description about each place and
transition is presented in a tabular form for each of these
submodels.

3.1 Server submodel

Table 1. Places and transitions of the server
behavior

Place Represents
pps_up

pps_f
pps_rp
pss_up

pss_c
pss_f

primary server functioning, controlling
the cluster
primary server failure occurred
failed primary server waiting for repair
standby server functioning, waiting for
taking over control
standby server controlling the cluster
standby server failure occurred, waiting
for repair

Transition Represents
tps_f
tps_t
tps_rp
iss_t
tss_f
tss_rp
iss_b

failure of primary server
failed primary server being taken over
repair of primary server
standby server taking over control
failure of standby server
repair of standby server
standby server being taken over

The failure-repair behavior of servers is modeled as

shown in Figure 2. The places and transitions are shown
in Table 1. Both the primary server and the standby server
are either up or down. Initially, a token presents in places
pps_up and pss_up, respectively, representing that both
the primary server and the standby server are functioning.
The primary server controls the cluster, and the standby
server waits for taking over the control of the cluster.
When a primary server failure occurs, a token is moved
from place pps_up to pps_f, which is modeled by timed
transition tps_f. The time to primary server failure is
exponentially distributed with rate λps. The standby server
detects the health of the primary server from time to time.
It notices the failure of primary server at the end of a
prescribed time interval. This is modeled by the timed
transition tps_t, and the time to failure detection is
exponentially distributed with rate µst. So, a token is
moved from place pps_f to pps_rp. Once the token
presents in the place pps_rp, it triggers the immediate
transition iss_t, which means that the standby server takes
over the control of the cluster from the primary server.
The repair of the primary server is modeled by timed
transition tps_rp, and the primary server repair time is
exponentially distributed with rate µpsr. When the primary
server gets repaired, a token moves from place pps_rp to
pps_up. Once the token presents in the place pps_up, it
triggers the immediate transition iss_b, which means that
the primary server takes over the control of cluster back
from the standby server. The standby server goes back to
the original state, in which it keeps detecting the health of

the primary server and waiting for taking over the control.
The failure of the standby server is modeled by the timed
transition tss_f. The time to standby server failure is
exponentially distributed with rate λss. The repair of
standby server is modeled by timed transition tss_rp, and
the time to standby server repair is exponentially
distributed with rate µssr.

Transition Priority
tps_f, tps_t, tps_rp, iss_t, tss_f, tss_rp, iss_b 500

Transition Enabling Function
iss_t
iss_b

(#(pps_rp)=1)
(#(pps_up)=1)

Transition Rate Function
tps_f
tps_t
tps_rp
tss_f
tss_rp

#(pps_up)λps
#(pps_f)µst
#(pps_rp)µpsr
#(pss_c)λss

#(pss_f)µssr

Figure 2. SRN model of the server behavior

3.2 Network connection submodel

Table 2. Places and transitions of the network
connection behavior

Place Represents
ppl_up

ppl_f
ppl_rp
psl_up

psl_c
psl_f

primary LAN functioning, connecting the
network
primary LAN failure occurred
failed primary LAN waiting for repair
standby LAN functioning, waiting for
taking over network connection
standby LAN connecting the network
standby LAN failure occurred, waiting for
repair

Transition Represents
tpl_f
tpl_t
tpl_rp
isl_t
tsl_f
tsl_rp
isl_b

failure of primary LAN
failed primary LAN being taken over
repair of primary LAN
standby LAN taking over connection
failure of standby LAN
repair of standby LAN
standby LAN being taken over

The failure-repair behavior of LAN is modeled as

shown in Figure 3. The places and transitions are shown
in Table 2. The behavior of the primary LAN and the
standby LAN is similar to that of the primary server and
standby server in server submodel. We also assume that
the timed transitions are exponentially distributed. But,
the priority of the transitions is lower than the priority of
transitions in the server submodel. The detailed behavior
discuss may refer to the server submodel.

Transition Priority
tpl_f, tpl_t, tpl_rp, isl_t, tsl_f, tsl_rp, isl_b 400

Transition Rate Function
tpl_f
tpl_t
tpl_rp
tsl_f
tsl_rp

#(ppl_up)λpl
#(ppl_f)µlt
#(ppl_rp)µplr
#(psl_c)λsl
#(ppl_f)µslr

Transition Enabling Function
isl_t
isl_b

(#(ppl_rp)=1)
(#(ppl_up)=1)

Figure 3. SRN model of the LAN behavior

3.3 Client submodel

Table 3. Places and transitions of the client
behavior

Place Represents
pc_up
pc_pf
pc_pwo

pc_pwr

pc_rp
pc_wi

pc_if
pc_iwr

pc_iwo

pc_rb

client functioning
client permanent failure occurred
client with permanent failure waiting for
reconfiguring out of cluster
client with permanent failure waiting for
reboot cluster
failed client waiting for repair
repaired client waiting for reconfiguring
into cluster
client intermittent failure occurred
client with intermittent failure waiting for
reboot cluster
client with intermittent failure waiting for
reconfiguring out of cluster
failed client waiting for reboot

Transition Represents
tc_pf
ic_cpf
ic_upf
tc_pro

tc_prb

tc_rp
tc_ri
ic_in

tc_if
ic_cif
ic_uif
tc_irb

tc_iro

tc_crb
tc_pfr

permanent failure of client
covered permanent failure
uncovered permanent failure
client with covered permanent failure
reconfiguring out of cluster
cluster with uncovered permanent failure
rebooting
repair of client
client reconfiguring into cluster
quorum not present, immediate transiting
into cluster
intermittent failure of client
covered intermittent failure
uncovered intermittent failure
cluster with uncovered intermittent failure
rebooting
client with covered intermittent failure
reconfiguring out of cluster
client rebooting
permanent failure when client being
rebooted

The failure-repair behavior of a sub system with N

clients is modeled as shown in Figure 4. Its places and
transitions are shown in Table 3 [14] [15]. The N clients
are either up or down. Initially, the N tokens are present in
place pc_up representing that every client in the sub
system is functioning. The clients can suffer two kinds of
failures: permanent failure and intermittent failure. A
permanent failure is any failure that requires the physical
repair of the failed component, which is modeled by
timed transition tc_pf, and an intermittent failure is one
that can be corrected by rebooting the corresponding

client, which is modeled by timed transition tc_if. The
times to permanent and intermittent failures are
exponentially distributed with rates λp and λi respectively.

Transition Priority
tc_prb, tc_irb
ic_cpf, ic_upf, ic_cif, ic_uif
ic_in
tc_pro, tc_iro
tc_ri
tc_pf, tc_if, tc_rp, tc_crb, tc_pfr

300
250
200
150
100
50

Transition Rate Function
tc_pf
tc_pro
tc_prb
tc_rp
tc_ri
tc_if
tc_irb
tc_iro
tc_crb
tc_pfr

#(pc_up)λp
#(pc_pwo)µrc
#(pc_pwr)µsrb
#(pc_rp)µrp
#(pc_wi)µrc
#(pc_up)λi
#(pc_iwr)µsrb

#(pc_iwo)µrc
#(pc_rb)µcrb
#(pc_rb)λp

Arc Variable arc function
(pc_pwr) → tc_prb → (pc_rp)
(pc_iwr) → tc_irb → (pc_up)
(pc_wi) →ic_in→(pc_up)

#(pc_pwr)
#(pc_iwr)
#(pc_wi)

Transition Enabling Function
tc_pf, tc_if, tc_ri
ic_in

(#(pc_up)≥Q)
(#(pc_up)<Q)

Figure 4. SRN model of the client behavior

A failure can be covered or uncovered. The covered

failure can be recovered from by a cluster reconfiguration,
and causes only a very brief outage of the cluster. The
uncovered failure can be recovered from by rebooting the
cluster, and results in cluster going down until it is
rebooted. The covered permanent failure is modeled by
immediate transition ic_cpf with probability cp, and the
uncovered permanent failure is modeled by immediate

transition ic_upf with probability 1-cp. The covered
intermittent failure is modeled by immediate transition
ic_cif with probability ci, and the uncovered intermittent
failure is modeled by immediate transition ic_uif with
probability 1-ci. These four transitions are enabled only if
the cluster is functioning.

When a covered failure occurs, in order to perform a
client repair or a client rebooting, the corresponding client
has to be mapped out of the cluster and keeps down until
the repair or the rebooting is completed. The system
performs a removing reconfiguration by the following
two steps. First, the system suspends all the processing
activities and cancels the cluster membership of the failed
client. Then, the system takes a vote to check if the
quorum is still formed by the up clients, resumes all the
processing if the quorum is formed, or hangs and stops
any further processing if the quorum is not formed. This
is modeled by timed transition tc_pro and tc_iro for
covered permanent failure and covered intermittent failure
respectively. We assume the reconfiguration time is
exponentially distributed with rate µrc.

The client repair and client rebooting are modeled by
timed transitions tc_rp and tc_crb respectively. We
assume the times of client repair and client rebooting are
exponentially distributed with rate µrp and µrb. While a
client is being rebooted, it can suffer a permanent failure.
This is modeled by timed transition tc_pfr with
exponentially distribution rate λp.

When the failed client has been repaired or rebooted,
the system performs a readmission reconfiguration to
allow the repaired client or the rebooted client come back
to the cluster. This is modeled by the timed transition
tc_ri. It is enabled only if the cluster is functioning.
Otherwise, the immediate transition ic_in is triggered and
take all the tokens in place pc_wi to place pc_up.

When an uncovered failure occurs, in order to recover
the failed client, the cluster has to be rebooted and keeps
going down until its completion. This is modeled by
timed transition tc_prb and tc_irb for uncovered
permanent failure and uncovered intermittent failure
respectively. We assume the time to reboot cluster is
exponentially distributed with rate µsrb. When transition
tc_prb fires, it takes all the tokens in place pc_pwr and
deposits them in place pc_rp. This is due to the fact that if
two or more clients suffer an uncovered permanent
failure, after the cluster rebooted all the clients are
mapped out and ready for repair. When transition tc_irb
fires, it takes all the tokens in place pc_iwr and deposits
them in place pc_up. This is because all the clients
suffered an uncovered intermittent failure are mapped into
cluster and become functioning clients after cluster
reboots. These two transitions have the highest priority,
which implies when the cluster is being rebooted, no other
behavior can occur.

4. Example and numerical results

In this section, we use the SRN model described above
to study the availability of HA OSCAR cluster through an
example. The input parameter values used in the
computation of the measures are shown in Table 4. These
values are for illustrative only.

Table 4. Input parameter for the HA OSCAR

cluster
Input Parameter Numerical

Value
Mean time to primary server failure, 1/λps 5,000 hrs.
Mean time to primary server repair, 1/µpsr 4 hrs.
Mean time to takeover primary server, 1/µst 30 sec.
Mean time to standby server failure, 1/λss 5,000 hrs.
Mean time to standby server repaie, 1/µssr 4 hrs.
Mean time to primary LAN failure, 1/λpl 10,000 hrs.
Mean time to primary LAN repair, 1/µplr 1 hr.
Mean time to takeover primary LAN, 1/µlt 30 sec.
Mean time to standby LAN failure, 1/λsl 10,000 hrs.
Mean time to standby LAN repair, 1/µslr 1 hr.
Mean time to client permanent failure, 1/λp 2,000 hrs.
Mean time to client intermittent failure, 1/λ i 1,000 hrs.
Mean time to system reboot, 1/µsrb 15 min.
Mean time to client reboot, 1/µcrb 5 min.
Mean time to client reconfiguration, 1/µrc 1 min.
Mean time to client repair, 1/µrp 4 hrs.
Permanent failure coverage factor, cp 0.95
Intermittent failure coverage factor, ci 0.95

We assume that the system is functioning only if either

primary server or the standby server is functioning, either
primary LAN or the standby LAN is functioning, the
quorum for clients is present, and no system rebooting or
reconfiguration is being processed. The availability of the
system at time t is computed as the expected
instantaneous reward rate E[X(t)] at time t and its general
expression is

∑
∈

=
τ

π
k

kk trtXE)()]([

where rk represents the reward rate assigned to state k of
the SRN, τ is the set of tangible marking, and)(tkπ is
the probability of being in marking k at time t [16] [17].

The steady-state system availability and the mean
cluster down time per year for the different configurations
are shown in Table 5. We notice that the system
availabilities for the various configurations are almost the
same. After we introduce the quorum voting mechanism
in the client submodel, the system availability is not
sensitive to the change of client configuration. This
implies that when we add more clients to improve the
system performance, the availability of the system can
almost remain unchanged. The instantaneous availabilities

of the system are shown in Figure 5 when it has 8 clients
and the quorum is 5.

Table 5. System availability for different

configurations
System
Config.

(N)

Quorum
Value
(Q)

System
Availability

(A)

Mean cluster down
time (min./yr.)

(t)
4 3 0.999933475091 34.9654921704
6 4 0.999933335485 35.0388690840
8 5 0.999933335205 35.0390162520

16 9 0.999933335204 35.0390167776

Figure 5. System instantaneous availabilities

5. Conclusion

Under the requirement of mission critical application,
we introduce a HA solution for OSCAR cluster. We build
a SRN model for the detailed failure-repair behavior of
the system, and calculate and predict the system
availability of the system. The results show that the
component redundancy is efficient in improving system
availability.

Several interesting HA features to be included in HA
OSCAR cluster will be considered in the future. These
include storage disk redundancy, application level
failover, etc. Sensitive analysis and tradeoff analysis are
also interesting areas left to be explored.

6. References

[1] I. Ahmad, “Cluster Computing: A Glance at Recent Events”,
IEEE Concurrency, January-March 2000, vol. 8, no. 1, pp. 67-
69.

[2] M.J. Brim, T.G. Mattson, and S.L. Scott, “OSCAR: Open
Source Cluster Application Resources”, Ottawa Linux
Symposium 2001, Ottawa, Canada, 2001.

[3] J. Hsieh, T. Leng, and Y.C. Fang, “OSCAR: A Turnkey
Solution for Cluster Computing”, Dell Power Solutions, 2001,
Issue 1, pp. 138-140.

[4] http://oscar.sourceforge.net/

[5] The Open Cluster Group, “OSCAR Cluster User’s Guide,
Software Version 2.2, Documentation Version 2.2”, February
27, 2003.

[6] C. Leangsuksun, L. Shen, H. Song, S.L. Scott, and I.
Haddad, “The Modeling and Dependability Analysis of High
Availability OSCAR Cluster”, The 17th Annual International
Symposium on High Performance Computing Systems and
Applications, Quebec, Canada, May 11-14, 2003.

[7] C. Leangsuksun, L. Shen, T. Liu, H. Song, and S.L. Scott,
“Dependability Prediction of High Availability OSCAR Cluster
Server”, The 2003 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA'03), Las Vegas, Nevada, USA, June 23-26, 2003.

[8] J. Muppala, G. Ciardo, and K.S. Trivedi, “Stochastic Reward
Nets for Reliability Prediction”, Communications in Reliability,
Maintainability and Serviceability: An International Journal
published by SAE International, July 1994, Vol. 1, No. 2, pp. 9-
20.

[9] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic
Petri net package”, Proc. Int. Workshop on Petri Nets and

Performance Models, IEEE Computer Society Press, Los
Alamitos, CA, Dec. 1989, pp 142-150.

[10] The Open Cluster Group, “How to Install an OSCAR
Cluster, Software Version 2.2, Documentation Version 2.2”,
February 27, 2003.

[11] O. Kolesnikov, and B. Hatch, “Building Linux Virtual
Private Networks”. New Riders Publishing, February 2002.

[12] Hewlett Packard, “Managing MC/ServiceGuard”, Hewlett-
Packard Company, October 1998, pp. 60-68.

[13] A.S. Tanenbaum, and M.S. Van, “Distributed Systems:
Principles and Paradigms”, July 2001, pp. 371-375.

[14] A.S. Sathaye, R.C. Howe, and K.S. Trivedi, “Dependability
Modeling of a Heterogeneous VAXcluster System Using
Stochastic Reward Nets”, Hardware and Software Fault
Tolerance in Parallel Computing Systems, Ellis Horwood Ltd.,
1992, pp. 33-59.

[15] O. Ibe, A. Sathaye, R. Howe, and K.S. Trivedi, “Stochastic
Petri Net Modeling of VAXcluster Availability”, Proc. Third
Int. Workshop on Petri Nets and Performance Models
(PNPM89), Kyoto, 1989, pp. 112-121.

[16] D.I. Heimann, N. Mittal, and K.S. Trivedi, “Availability
and Reliability Modeling for Computer Systems”, Advances in
Computers, 1990, Vol 31, pp 175-233.

[17] M. Malhotra and K.S. Trivedi, “Dependability Modeling
Using Petri-Nets”, IEEE Transactions on Reliability, Sept. 1995.
Vol. 44, No. 3, pp. 428-440.

