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Abstract 
 

Since the initial introduction of Open Source Cluster 
Application Resources (OSCAR), this software package 
has been a well-accepted choice for building high 
performance computing systems. As it continues to be 
applied to mission-critical environments, high availability 
(HA) features therefore are needed to be included in 
OSCAR cluster. In this paper, we provide a HA solution 
for OSCAR cluster. As a widely used technique in HA 
solutions, component redundancy is adopted to improve 
the system availability. Based on the proposed 
architecture, we develop a detailed failure-repair model 
for predicting the availability of HA OSCAR cluster. 
Stochastic reward nets (SRN) are used to model the 
behavior of the system. We specify our SRN model to 
Stochastic Petri Net Package, describe and compute 
several interesting output measures that characterize 
availability features of HA OSCAR cluster.  

 

1. Introduction12 
 

As an enormous computational power for the 
scientific, commercial, and educational communities, 
clusters are becoming increasingly cost effective and 
popular [1] [2]. Open Source Cluster Application 
Resources (OSCAR) is a fully integrated bundle of 
software designed for building, maintaining, and using a 
Linux cluster for high performance computing (HPC) [3] 
[4] [5]. Since the initial introduction of OSCAR, this 
software package has become a well-accepted choice for 
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building HPC clusters. As cluster computing systems 
continue to be applied to mission-critical environments, 
high availability (HA) features are therefore required to 
be included in OSCAR cluster.  

The current OSCAR cluster suffers from several single 
point of failure. The failure rates of some key components 
dominate the availability of the entire system. In order to 
improve the system availability, component redundancy is 
adopted in HA OSCAR cluster to eliminate the single 
point of failure. First, a standby server is introduced as a 
duplication to take over the control of the cluster from the 
primary server when it is failed. A communication feature 
with heartbeat mechanism is applied as health detection 
between the two servers. Second, redundant network 
connection provides an alternative communication path in 
the case of network card, wire or switch failure happens. 
Last, a quorum voting mechanism is used for the multiple 
clients. Component redundancy will significantly improve 
the system availability [6] [7].   

Availability analysis and modeling of the HA OSCAR 
cluster can predict the availability measures in the design 
stage and help us to determine the range of parameters so 
that the system availability goal will be met. Stochastic 
reward nets (SRN) have been successfully used in the 
availability evaluation and prediction for complicated 
systems, especially when the time-dependent behavior is 
of great interest [8]. We apply SRN for aiding in the 
automated generation and solution of the underlying large 
and complex Markov chains. The Stochastic Petri Net 
Package (SPNP) [9] allows the specification of SRN 
models and the computation of steady and transient-state. 
We utilize SPNP to build and solve our SRN model. 

In this paper, we provide a HA solution for OSCAR 
cluster. Based on the system architecture, we use SRN to 
develop a detailed failure-repair behavior model for the 
system. Several interesting output measures that 
characterize the availability features of the system are 
described and computed. The use of the model in studying 
various alternative configurations of the HA OSCAR 



cluster is also illustrated. The architecture and mechanism 
of the HA OSCAR cluster will be described in section 2. 
In section 3, we will develop the SRN model 
corresponding to the system. The behavior of servers, 
network connections, and clients will be discussed in 
detail. In section 4, we will provide some numerical 
results obtained from the model. Finally, conclusions will 
be presented in section 5. 

 
2. System architecture and mechanism 
 

The hardware configuration of HA OSCAR cluster is 
shown in Figure 1. The system consists of a primary 
server, a standby server, two LAN connections, and 
multiple clients, where all the clients have homogeneous 
hardware. A server is responsible for serving user’s 
requests and distributing the requests to specified clients. 
A client is dedicated to computation [10]. Each server has 
three network interface cards, one is connected to the 
Internet by a public network address, and the other two 
are connected to a private LAN, which consists of a 
primary Ethernet LAN and a standby LAN. Each LAN 
consists of network interface cards, switch, and network 
wires, and provides communication between servers and 
clients, and also between the primary server and the 
standby server.   

 

 
 

Figure 1. Architecture of the HA OSCAR cluster 
 

Initially, every component in the cluster is functioning. 
The primary server provides the services and processes all 
the user’s requests. The standby server activates its 
services and waits for taking over the primary server 
when its failure is detected. The periodical transmission 
of heartbeat messages travels across the Ethernet LAN 
between the two servers, and works as health detection of 
the primary server [11]. When a primary server failure 
occurs, the heartbeat detection on the standby server 
cannot receive any response message from the primary 

server. After a prescribed time, the standby server takes 
over the alias IP address of the primary server, and the 
control of the cluster transfers from the primary server to 
the standby server. The user’s requests are processed on 
the standby server from later on. From the user’s point of 
view, the transfer is almost seamless except the short 
prescribed time. The failed primary server gets repaired 
after the standby server taking over the control. Once the 
repair is completed, the primary server activates the 
services, takes over the alias IP address, and begins to 
process user’s requests. The standby server releases its 
alias IP address and goes back to initial state.   

At regular interval, the running server polls all the 
LAN components specified in the cluster configuration 
file, including the primary LAN cards, the standby LAN 
cards, and the switches. Network connection failures are 
detected in the following manner. The standby LAN 
interface is assigned to be the poller. The polling interface 
sends packet messages to all other interfaces on the LAN 
and receives packets back from all other interfaces on the 
LAN. If an interface cannot receive or send a message, 
the numerical count of packets sent and received on an 
interface does not increment for an amount of time. At 
this time, the interface is considered down [12]. When the 
primary LAN goes down, the standby LAN takes over the 
network connection. When the primary LAN gets 
repaired, it takes over the connection back from the 
standby LAN. 
  Whenever a client fails or gets repaired and the cluster 
is functioning, then the cluster undergoes a 
reconfiguration to remove the corresponding client from 
or admit the client into the cluster. This process is referred 
to as a cluster state transition. The HA OSCAR cluster 
uses a quorum voting scheme to keep the system 
performance requirement, where the quorum Q is the 
minimum number of functioning clients required for a 
HPC system. We consider a system with N clients, and 
assume that each client is assigned one vote. The 
minimum number of votes required for a quorum is given 
by (N+2)/2 [13]. Whenever the total number of the votes 
contributed by all the functioning clients falls below the 
quorum value, the system suspends operation. Upon the 
availability of sufficient number of clients to satisfy the 
quorum, a cluster resumption process takes place, and 
brings the system back to operational state.   
 
3. System model 
 

We divide the system behavior model into server 
submodel, network connection submodel and client 
submodel. A brief description about each place and 
transition is presented in a tabular form for each of these 
submodels. 

 



3.1 Server submodel 
 

Table 1. Places and transitions of the server 
behavior 

Place Represents 
pps_up 
 
pps_f 
pps_rp 
pss_up 
 
pss_c 
pss_f 

primary server functioning, controlling 
the cluster 
primary server failure occurred 
failed primary server waiting for repair  
standby server functioning, waiting for 
taking over control  
standby server controlling the cluster 
standby server failure occurred, waiting 
for repair 

 
Transition Represents 
tps_f 
tps_t 
tps_rp 
iss_t 
tss_f 
tss_rp 
iss_b 

failure of primary server 
failed primary server being taken over 
repair of primary server 
standby server taking over control  
failure of standby server 
repair of standby server 
standby server being taken over  

 
The failure-repair behavior of servers is modeled as 

shown in Figure 2. The places and transitions are shown 
in Table 1. Both the primary server and the standby server 
are either up or down.  Initially, a token presents in places 
pps_up and pss_up, respectively, representing that both 
the primary server and the standby server are functioning. 
The primary server controls the cluster, and the standby 
server waits for taking over the control of the cluster. 
When a primary server failure occurs, a token is moved 
from place pps_up to pps_f, which is modeled by timed 
transition tps_f. The time to primary server failure is 
exponentially distributed with rate λps. The standby server 
detects the health of the primary server from time to time. 
It notices the failure of primary server at the end of a 
prescribed time interval. This is modeled by the timed 
transition tps_t, and the time to failure detection is 
exponentially distributed with rate µst. So, a token is 
moved from place pps_f to pps_rp. Once the token 
presents in the place pps_rp, it triggers the immediate 
transition iss_t, which means that the standby server takes 
over the control of the cluster from the primary server. 
The repair of the primary server is modeled by timed 
transition tps_rp, and the primary server repair time is 
exponentially distributed with rate µpsr. When the primary 
server gets repaired, a token moves from place pps_rp to 
pps_up. Once the token presents in the place pps_up, it 
triggers the immediate transition iss_b, which means that 
the primary server takes over the control of cluster back 
from the standby server. The standby server goes back to 
the original state, in which it keeps detecting the health of 

the primary server and waiting for taking over the control. 
The failure of the standby server is modeled by the timed 
transition tss_f. The time to standby server failure is 
exponentially distributed with rate λss. The repair of 
standby server is modeled by timed transition tss_rp, and 
the time to standby server repair is exponentially 
distributed with rate µssr.  

 

 
Transition Priority 
tps_f, tps_t, tps_rp, iss_t, tss_f, tss_rp, iss_b 500 

 
Transition Enabling Function 
iss_t 
iss_b 

(#(pps_rp)=1) 
(#(pps_up)=1) 

 
Transition Rate Function 
tps_f 
tps_t 
tps_rp 
tss_f 
tss_rp 

#(pps_up)λps 
#(pps_f)µst 
#(pps_rp)µpsr 
#(pss_c)λss 

#(pss_f)µssr 
 

Figure 2. SRN model of the server behavior 
 

3.2 Network connection submodel 
 

Table 2. Places and transitions of the network 
connection behavior 

Place Represents 
ppl_up 
 
ppl_f 
ppl_rp 
psl_up 
 
psl_c 
psl_f 

primary LAN functioning, connecting the 
network 
primary LAN failure occurred 
failed primary LAN waiting for repair  
standby LAN functioning, waiting for 
taking over network connection  
standby LAN connecting the network 
standby LAN failure occurred, waiting for 
repair 



Transition Represents 
tpl_f 
tpl_t 
tpl_rp 
isl_t 
tsl_f 
tsl_rp 
isl_b 

failure of primary LAN 
failed primary LAN being taken over 
repair of primary LAN 
standby LAN taking over connection 
failure of standby LAN 
repair of standby LAN 
standby LAN being taken over  

 
The failure-repair behavior of LAN is modeled as 

shown in Figure 3. The places and transitions are shown 
in Table 2. The behavior of the primary LAN and the 
standby LAN is similar to that of the primary server and 
standby server in server submodel. We also assume that 
the timed transitions are exponentially distributed. But, 
the priority of the transitions is lower than the priority of 
transitions in the server submodel.  The detailed behavior 
discuss may refer to the server submodel. 

 

 
 

Transition Priority 
tpl_f, tpl_t, tpl_rp, isl_t, tsl_f, tsl_rp, isl_b 400 

 
Transition Rate Function 
tpl_f 
tpl_t 
tpl_rp 
tsl_f 
tsl_rp 

#(ppl_up)λpl 
#(ppl_f)µlt 
#(ppl_rp)µplr 
#(psl_c)λsl 
#(ppl_f)µslr 

 
Transition Enabling Function 
isl_t 
isl_b 

(#(ppl_rp)=1) 
(#(ppl_up)=1) 

 
 

Figure 3. SRN model of the LAN behavior 
 

3.3 Client submodel 
 

Table 3. Places and transitions of the client 
behavior 

Place Represents 
pc_up 
pc_pf 
pc_pwo 
 
pc_pwr 
 
pc_rp 
pc_wi 
 
pc_if 
pc_iwr 
 
pc_iwo 
 
pc_rb 

client functioning 
client permanent failure occurred 
client with permanent failure waiting for 
reconfiguring out of cluster 
client with permanent failure waiting for 
reboot cluster 
failed client waiting for repair  
repaired client waiting for reconfiguring 
into cluster 
client intermittent failure occurred 
client with intermittent failure waiting for 
reboot cluster 
client with intermittent failure waiting for 
reconfiguring out of cluster 
failed client waiting for reboot 

 
Transition Represents 
tc_pf 
ic_cpf 
ic_upf 
tc_pro 
 
tc_prb 
 
tc_rp 
tc_ri 
ic_in 
 
tc_if 
ic_cif 
ic_uif 
tc_irb 
 
tc_iro 
 
tc_crb 
tc_pfr 

permanent failure of client 
covered permanent failure 
uncovered permanent failure 
client with covered permanent failure 
reconfiguring out of cluster 
cluster with uncovered permanent failure 
rebooting 
repair of client 
client reconfiguring into cluster 
quorum not present, immediate transiting 
into cluster 
intermittent failure of client 
covered intermittent failure 
uncovered intermittent failure 
cluster with uncovered intermittent failure 
rebooting 
client with covered intermittent failure 
reconfiguring out of cluster 
client rebooting 
permanent failure when client being 
rebooted 

 
The failure-repair behavior of a sub system with N 

clients is modeled as shown in Figure 4. Its places and 
transitions are shown in Table 3 [14] [15]. The N clients 
are either up or down. Initially, the N tokens are present in 
place pc_up representing that every client in the sub 
system is functioning. The clients can suffer two kinds of 
failures: permanent failure and intermittent failure. A 
permanent failure is any failure that requires the physical 
repair of the failed component, which is modeled by 
timed transition tc_pf, and an intermittent failure is one 
that can be corrected by rebooting the corresponding 



client, which is modeled by timed transition tc_if. The 
times to permanent and intermittent failures are 
exponentially distributed with rates λp and λi respectively. 
 

 
 

Transition Priority 
tc_prb, tc_irb 
ic_cpf, ic_upf, ic_cif, ic_uif 
ic_in 
tc_pro, tc_iro 
tc_ri 
tc_pf, tc_if, tc_rp, tc_crb, tc_pfr 

300 
250 
200 
150 
100 
50 

 
Transition Rate Function 
tc_pf 
tc_pro 
tc_prb 
tc_rp 
tc_ri 
tc_if 
tc_irb 
tc_iro 
tc_crb 
tc_pfr 

#(pc_up)λp 
#(pc_pwo)µrc 
#(pc_pwr)µsrb 
#(pc_rp)µrp 
#(pc_wi)µrc 
#(pc_up)λi 
#(pc_iwr)µsrb 

#(pc_iwo)µrc 
#(pc_rb)µcrb 
#(pc_rb)λp 

 
Arc Variable arc function 
(pc_pwr ) → tc_prb → (pc_rp) 
(pc_iwr) → tc_irb → (pc_up) 
(pc_wi) →ic_in→(pc_up) 

#(pc_pwr)  
#(pc_iwr) 
#(pc_wi) 

 
Transition Enabling Function 
tc_pf, tc_if, tc_ri 
ic_in 

(#(pc_up)≥Q) 
(#(pc_up)<Q) 

 
Figure 4. SRN model of the client behavior 

 
A failure can be covered or uncovered. The covered 

failure can be recovered from by a cluster reconfiguration, 
and causes only a very brief outage of the cluster. The 
uncovered failure can be recovered from by rebooting the 
cluster, and results in cluster going down until it is 
rebooted. The covered permanent failure is modeled by 
immediate transition ic_cpf with probability cp, and the 
uncovered permanent failure is modeled by immediate 

transition ic_upf with probability 1-cp. The covered 
intermittent failure is modeled by immediate transition 
ic_cif with probability ci, and the uncovered intermittent 
failure is modeled by immediate transition ic_uif with 
probability 1-ci. These four transitions are enabled only if 
the cluster is functioning.   

When a covered failure occurs, in order to perform a 
client repair or a client rebooting, the corresponding client 
has to be mapped out of the cluster and keeps down until 
the repair or the rebooting is completed. The system 
performs a removing reconfiguration by the following 
two steps. First, the system suspends all the processing 
activities and cancels the cluster membership of the failed 
client. Then, the system takes a vote to check if the 
quorum is still formed by the up clients, resumes all the 
processing if the quorum is formed, or hangs and stops 
any further processing if the quorum is not formed. This 
is modeled by timed transition tc_pro and tc_iro for 
covered permanent failure and covered intermittent failure 
respectively. We assume the reconfiguration time is 
exponentially distributed with rate µrc.  

The client repair and client rebooting are modeled by 
timed transitions tc_rp and tc_crb respectively. We 
assume the times of client repair and client rebooting are 
exponentially distributed with rate µrp and µrb. While a 
client is being rebooted, it can suffer a permanent failure. 
This is modeled by timed transition tc_pfr with 
exponentially distribution rate λp.  

When the failed client has been repaired or rebooted, 
the system performs a readmission reconfiguration to 
allow the repaired client or the rebooted client come back 
to the cluster. This is modeled by the timed transition 
tc_ri. It is enabled only if the cluster is functioning. 
Otherwise, the immediate transition ic_in is triggered and 
take all the tokens in place pc_wi to place pc_up. 

When an uncovered failure occurs, in order to recover 
the failed client, the cluster has to be rebooted and keeps 
going down until its completion. This is modeled by 
timed transition tc_prb and tc_irb for uncovered 
permanent failure and uncovered intermittent failure 
respectively. We assume the time to reboot cluster is 
exponentially distributed with rate µsrb. When transition 
tc_prb fires, it takes all the tokens in place pc_pwr and 
deposits them in place pc_rp. This is due to the fact that if 
two or more clients suffer an uncovered permanent 
failure, after the cluster rebooted all the clients are 
mapped out and ready for repair. When transition tc_irb 
fires, it takes all the tokens in place pc_iwr and deposits 
them in place pc_up.  This is because all the clients 
suffered an uncovered intermittent failure are mapped into 
cluster and become functioning clients after cluster 
reboots. These two transitions have the highest priority, 
which implies when the cluster is being rebooted, no other 
behavior can occur. 



4. Example and numerical results 
 

In this section, we use the SRN model described above 
to study the availability of HA OSCAR cluster through an 
example. The input parameter values used in the 
computation of the measures are shown in Table 4. These 
values are for illustrative only. 

 
Table 4. Input parameter for the HA OSCAR 

cluster 
Input Parameter Numerical 

Value 
Mean time to primary server failure, 1/λps 5,000 hrs. 
Mean time to primary server repair, 1/µpsr 4 hrs. 
Mean time to takeover primary server, 1/µst 30 sec. 
Mean time to standby server failure, 1/λss 5,000 hrs. 
Mean time to standby server repaie, 1/µssr 4 hrs. 
Mean time to primary LAN failure, 1/λpl 10,000 hrs. 
Mean time to primary LAN repair, 1/µplr 1 hr. 
Mean time to takeover primary LAN, 1/µlt 30 sec. 
Mean time to standby LAN failure, 1/λsl 10,000 hrs. 
Mean time to standby LAN repair, 1/µslr 1 hr. 
Mean time to client permanent failure, 1/λp 2,000 hrs. 
Mean time to client intermittent failure, 1/λ i 1,000 hrs. 
Mean time to system reboot, 1/µsrb 15 min. 
Mean time to client reboot, 1/µcrb 5 min. 
Mean time to client reconfiguration, 1/µrc 1 min. 
Mean time to client repair, 1/µrp 4 hrs. 
Permanent failure coverage factor, cp  0.95 
Intermittent failure coverage factor, ci 0.95 

 
We assume that the system is functioning only if either 

primary server or the standby server is functioning, either 
primary LAN or the standby LAN is functioning, the 
quorum for clients is present, and no system rebooting or 
reconfiguration is being processed. The availability of the 
system at time t is computed as the expected 
instantaneous reward rate E[X(t)] at time t and its general 
expression is  

∑
∈

=
τ

π
k

kk trtXE )()]([  

where rk represents the reward rate assigned to state k of 
the SRN, τ  is the set of tangible marking, and )(tkπ  is 
the probability of being in marking k at time t [16] [17].   

The steady-state system availability and the mean 
cluster down time per year for the different configurations 
are shown in Table 5. We notice that the system 
availabilities for the various configurations are almost the 
same. After we introduce the quorum voting mechanism 
in the client submodel, the system availability is not 
sensitive to the change of client configuration. This 
implies that when we add more clients to improve the 
system performance, the availability of the system can 
almost remain unchanged. The instantaneous availabilities 

of the system are shown in Figure 5 when it has 8 clients 
and the quorum is 5. 

 
Table 5. System availability for different 

configurations 
System 
Config. 

(N) 

Quorum 
Value  
(Q) 

System 
Availability 

(A) 

Mean cluster down 
time (min./yr.) 

(t) 
4 3 0.999933475091 34.9654921704 
6 4 0.999933335485 35.0388690840 
8 5 0.999933335205 35.0390162520 

16 9 0.999933335204 35.0390167776 
 
   

 
 

Figure 5. System instantaneous availabilities  
 
5. Conclusion 
 

Under the requirement of mission critical application, 
we introduce a HA solution for OSCAR cluster. We build 
a SRN model for the detailed failure-repair behavior of 
the system, and calculate and predict the system 
availability of the system.  The results show that the 
component redundancy is efficient in improving system 
availability.     

Several interesting HA features to be included in HA 
OSCAR cluster will be considered in the future. These 
include storage disk redundancy, application level 
failover, etc. Sensitive analysis and tradeoff analysis are 
also interesting areas left to be explored. 
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