
Scalable C3 Power Tools

Brian Luethke and Stephen L. Scott1
Network and Cluster Computing Group.
Oak Ridge National Laboratory, USA.
{luethkeb / scottsl@ornl.gov}

Abstract
With the growth of the typical cluster reaching 512 and more compute nodes, it
is apparent that cluster tools must begin to reach toward the 1000’s-of-nodes in
scalability. There are a number of problems that must be considered when
attempting to create a scalable version of existing cluster tools. For a tool to
successfully scale, it must maintain relative performance without sacrificing
reliability and ease of use. The version 4.0 release of the C3[1][2] tools has
started stretching the Single System Illusion concept into the realm of 1000’s of
compute nodes by actually improving performance on larger clusters. This paper
is a discussion of how this was implemented, how to use this new version of C3,
and presents some results comparing the latest release with prior versions of C3.

1. Introduction

In 1999 a project was initiated at Oak Ridge National Laboratory (ORNL) to
develop a set of tools that would facilitate the use and administration of clusters
in a Single System illusion (SSi) style such that a single command could run
across numerous machines. This work resulted in the Cluster Command and
Control (C3) Power Tools. Version 1.0, completed in 2000, was a proof of
concept implementation for in-house use only. While using version 1.0 at
ORNL, it was discovered that the functionality was useful, however that serial
execution of commands across the cluster nodes was quite slow. Version 2.0
was the first multi-threaded release. Unfortunately, due to a bug in Perl’s[3]
thread package v2.0 was not released to the public. Version 2.6 was the first
public release of the C3 tools. This version used a multi-process method for
execution that greatly increased the scalability over version 1.0. At this time, the
C3 implementation grew to a size that made it difficult to maintain in Perl. Thus
the decision was made to rewrite the entire C3 suite in Python[4]. The result of
this was version 3.0, released to the public on August 15, 2001. This version
completely updated the command line syntax and contained an expanded multi-
cluster capability. However, this version still used the single layer multi-process

1 Research supported by the Mathematics, Information and Computational

Sciences Office, Office of Advanced Scientific Computing Research, Office
of Science, U. S. Department of Energy, under contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

fan-out tree used in version 2.6. The most recent release, version 4.0, is the first
scalability release. This version retains the full functionality of the prior release
and adds the ability to scale the C3 environment to clusters in order of 4096
nodes. This paper is a discussion of the new scalability features of C3 version
4.0 – the scalability release.

2. Basic C3 Operation

C3 recognizes three modes of cluster use. The first mode is direct local. Direct
refers to the command being invoked from the cluster head-node. Local means
that the invoking machine (head-node in this case) has knowledge of all nodes
that exist in the cluster. Thus, direct local means that the command is invoked
from the cluster head-node and the head-node has knowledge of all nodes that
exist in the cluster via a local C3 configuration file. The second mode is direct
remote. Remote in this case means that the machine from which the command is
invoked is not the head-node. Thus direct remote means the command is
invoked from a machine other than the head-node and because it is direct and
the invoking machine has knowledge of the targeted compute nodes. The third
mode is indirect remote. Indirect refers to the command being invoked from a
machine that does not have knowledge of all nodes within the cluster. In this
case, the invoking machine is not the cluster head-node and only knows of the
cluster’s existence and not anything of the individual nodes within the cluster.
This is the typical case for off-cluster access where the user’s desktop machine
only has a reference to the cluster (no individual node information) and the
physical cluster configuration information is maintained on the respective
cluster’s head-node. During execution, C3 will confirm that the local machine’s
hostname is that listed as the head-node of the cluster in the C3 configuration
file. Therefore, either a DNS lookup or a valid hosts file is required. An
important note is that the indirect local cluster mode is not considered a valid
mode, as it will cause an infinite loop at execution.

2.1 Configuration File

The more important aspects of C3 to understand are it's configuration file
format. Figure 1 will be used for discussion regarding the standard configuration
file. This configuration file contains four cluster definition blocks; each block
follows the same syntax rules. The first tag "cluster" is required and specifies
that a cluster definition block is beginning. This is followed by the cluster name
(any alphanumeric name is acceptable). Each cluster name must be unique,
although it is up to the system administrator to guarantee this attribute. Next is
the "{" character that delineates the start of the cluster definition. While the
cluster name only has meaning within the context of C3, the names given for the
nodes must be proper addresses for accessing those interfaces (that is: the names
must be resolvable, either through DNS, a proper hosts file, or the IP address of
the machine). The first machine in the list is of special significance as this is the
head-node of the cluster. When a remote cluster is specified this is the node that

the cluster will be accessed through. The head-node declaration has three forms,
in clusters first and feanor the cluster is on a private network and the head-node
has an external interface. In cluster first it is easy to see that the first name on the
line is the external interface, followed by a colon, then the internal interface
name. On feanor the hostname feanor is the external address and node0 is the
internal interface. In cluster second there is only a single name on the head-node
line. In this case it is assumed that the external and internal interface is the same.
Cluster torc is an example of an indirect cluster. This is denoted by the first
character on the head-node line being a ":" followed by the hostname of the
remote clusters head-node.

Next is the compute node block. Nodes can be specified in two ways. The first
method is line by line, one node per line. Cluster first uses this example. Each
line contains one, and only one, node. To mark a node specified by the singular
method as offline, use the "dead" tag. The second method is the use of node
ranges, cluster second and feanor use these. Here, the node declaration begins
with the part of the name that is common among all the nodes then followed by
a range, enclosed by the "[]" characters. The range must be at the end of the
name (if using IP addresses you would do 192.168.1.[1-64]), only one range per
line at the end of the name. When dealing with nodes specified via ranges a
single node may be marked offline by using the “exclude” tag followed by a
space and then the node number. To mark a range of nodes offline, use the
“exclude” tag again followed by a space with the range of nodes offline
enclosed with the “[]” characters. Multiple exclude tags may be listed, however
they only apply to the range statement preceding them. An example of this is in
feanor: where two non-contiguous node ranges are excluded from the first range
in two separate lines. It is very important to note that the words “exclude” and
“dead” are not reserved words and are only treated as an offline specifier when
syntactically legal to do so. For example, figure 2 uses valid, but not
recommended node names.

2.2 Command Line Interface

Beginning with version 3.0 of C3 an effort was made to keep the command line
interface (CLI) as close to the standard Linux command as possible. Nearly
every option that the Linux command would have is supported under C3; the
only time an option was omitted or changed was when it was not applicable to a
cluster.

The C3 CLI standard format is as follows:

command [options] [machine_definitions] other [other…]

“Command” is simply which C3 command is being executed (cexec, cpush,
etc...). “Options” are the options being passed to the command, a single dash (–)
followed by an alphanumeric character or a double dash (--) followed by

multiple characters. “Machine_definitions” is where the clusters and ranges you
wish the command to be executed on are listed. “other” is whatever is required
for that specific command. For the examples given below refer to the first
configuration file in this paper. Machine definitions follow this format:

username@clustername:range

username@ is used if your remote account’s login is not the same as your local
account. This can be specified for each cluster individually. If this is omitted
then the default username is used (you may set an environment variable or the
local username will be used). The cluster name is the name you gave the cluster
in the configuration file following the cluster tag. Range is given as either
multiple nodes in one block (beginning-end) or a single number (number)
separated by a comma. Here is an example cexec command.

cexec --pipe : zbml1@second: zbml1@feanor:1-5,10

torc: hostname

In the above example, the option --pipe is used to tell the cexec command to
format the output in a pipe friendly format. Next is a “:” by itself, this represents
the default cluster, the first cluster listed in the configuration file. The “:” is
simply a notational convenience so the user doesn’t have to type out the full
name of the default cluster every time. All of the different formats in the
machine_definitions can work this way also: zbml1@:, “:1-3,5”, “zbml1@:1-
23” are all valid. Specified next is the cluster named second with the alternate
username “zbml1”. Following this is the cluster feanor, alternate username
zbml1, and execute only on nodes1, 2, 3, 4, 5, 10. Lastly, execute on torc with
the default username and execute on all nodes on the cluster. The command
cexec is executing here is “hostname”.

One important note about using ranges is that they refer to the nodes position in
the configuration file – similar to the enumerated type in programming
languages. For this reason it is important to mark nodes offline instead of simply
removing them from the configuration file. It is also easier to quickly ascertain
which nodes are down when they are explicitly entered as offline. Node
positions begin counting at 0. Thus, node position 1 is the second node in the
list. The head-node declaration does not count as a node position. The zero
based numbering scheme may cause number skewing if it is desired to start node
counts 1. However, it is easily resolved by using a placeholder at the beginning
of the node definition block. For example:

cluster example1 { # no placeholder, node1 is in position 0
 external:node0
 node[1-64]
}

cluster example2 { # placeholder added, node1 is in position 1
 outside:node0
 dead placeholder #dummy entry to change to 1 based indexing
 node[1-64]
}

The following cpush will push /etc/passwd to the first node in both of the above
specified clusters:

cpush example1:0 example2:1 /etc/passwd

Three commands have been added to C3 to help manage the use of multiple
clusters and node ranges. First is clist: this command lists every cluster in the
configuration file and their type (direct local, indirect remote, direct remote).
Second is cname, it takes a node name and searches the configuration file list
returning the position number of that node. Third is cnum, it takes a number
range and returns the node names those positions represent.

3. Scalable C3

Using C3 in its scalable execution model is very similar to using C3 in the
standard non-scalable fashion. Both the command line interface and the
configuration file have the same syntax; only the semantics of the options has
changed. The use of C3 in its non-scalable execution model is capable of
controlling multiple clusters in a single file. At this time when using the scalable
execution model C3 is only capable of interfacing with a single cluster.
However, one may use the indirect remote model from off the cluster and then
use the scalable release on the target cluster(s). This will allow one to interact
with multiple large clusters simultaneously.

While from a conceptual point of view it is possible to set up a cluster in this
fashion in any 3.x version of C3, it is important that version 4.0 or greater be
used to achieve the scalable execution model. This is because in order to
implement the scalable execution model many of C3’s internal algorithms had to
be parallelized. If using versions prior to version 4.0, nearly all of the command
will run serially rather than in parallel.

3.1 Configuration File

While the configuration file for the scalable execution model is syntactically
identical to the above, the meaning of the positions have changed somewhat.
The basic concept is that a single large cluster may easily be viewed as several
“logical” smaller clusters. The first decision a system administrator needs to
make is how to logically partition the cluster. Ideally the cluster should be
partitioned as close to a perfect square as possible, in our example a 64-node

cluster is divided into 8 8-way clusters. C3 easily handles up to 64-way clusters
resulting in an estimated top end of 4096 nodes (64 64-way cluster) with only
one level of indirection.

Using the same configuration file syntax as in the non-scalable version one can
easily create a 64-node scalable cluster configuration as in figure 3. Graphically
this would appear as in figure 4.

As you can see, the cluster block in figure 3 is syntactically the same as the
cluster configuration file presented in the non-scalable section of figure 1. The
difference is that here only one cluster is defined per configuration file and not
just one cluster per block as was done in the standard release. In the scalability
release, when a command is executed, it is "staged", or sent to the specified
staging node, represented by the head-node line, to be executed on the block of
compute nodes that the staging node is responsible for, listed in the compute
node block. In the above example each chunk of the cluster is defined as a direct
remote cluster and it is required that the commands be executed from the head-
node of the cluster when using the scalable execution model. One may
alternatively define each as an indirect cluster, but then each staging node must
have local to that system, the list of compute nodes it is responsible for. Using
direct remote staging nodes is slightly slower but is much easier to maintain,
while the indirect is faster but more difficult to maintain. Figure 5 is an example
of the indirect staging nodes.

One important decision to make is whether the staging node is included within
its own list of responsible nodes. C3 will either execute on the compute nodes or
the head-node, not both at the same time. Thus, in the above example, it will
take two commands to run on every node as C3 will only execute the given
command on the list of compute nodes that it holds responsibility for and not
itself. This semantics has the convenience of separation of responsibilities but
requires more commands for a full cluster execution. However, if a staging node
lists itself in their responsibilities list, then a single command will run on the
entire cluster. Figure 6 is an example of the staging node adding itself to its list
of responsibilities.

This choice partially depends on how the system administrator sets up their
cluster. If several nodes are dedicated as staging nodes then you will not want
them to participate as a compute node. This will typically give the fastest results,
as the only loads on those nodes will be system services and never a user’s
application. It is important to note that C3 permits alternate configuration files to
be specified. The latest release provides the capability to set a per user default
configuration file using environment variables.

Physical layout of the cluster may impact the ordering of the nodes. Ideally each
cluster block would be within a single switch, including the head node of that

cluster block. This is because intra-switch communication is very fast. For
example, if each switch only contains 32 ports then each block should not
contain more than 1 staging node and 31 compute nodes – with each of those
nodes physically connected to the same switch. It is not as important that the
staging nodes all be connected to the same switch as the head node used to
initiate the C3 command, though it would also speed execution. It is not
recommended that each node service more than 64 nodes unless absolutely
necessary.

3.2 Scalable Command Line

The choice a system administrator makes about whether the staging node
includes itself in it responsibilities list determines to some extent how the
command line is used. Most of these examples will assume that the staging node
includes itself in the responsibilities list. In the case where it is not included it
would require an extra command so that the execution will also take place on the
staging nodes. There will be a few examples of this behavior noted also.

The most important option common throughout the C3 commands is the --all
option. This option tells C3 to execute the given command on each and every
cluster and node in the configuration file. It is recommended that the most
commonly used or perhaps all of the C3 commands be aliased to “command --
all" for convenience. The following command will push /etc/passwd to every
node in the scalable cluster:

cpush --all /etc/passwd

The other option is to explicitly list each sub-cluster on the command line.
However, for large clusters this would be quite cumbersome if not impossible to
do without human error from the keyboard.

At this point using ranges on a scalable cluster is not as clean as using them on a
non-scalable cluster. Because “node48” could be in any of the sub-clusters, or
“node35-64” may cross several sub-cluster boundaries. These must be explicitly
searched on and explicitly stated on the command line. For example searching in
the first scalable configuration file:

cname --all node48 node35 node64

will return node 48 in part6 position 7, node35 in part5 position 1, node64 in
part8 position 8.

To execute on node48 use:

cexec part6:7 hostname

To execute on 35-64 use:

cexec part5:1-7 part6: part7: part8: hostname

In cases where the system administrator may want to only execute on the non-
staging nodes, for example to read logs. Here, having a configuration file where
each staging node only lists itself in its list of responsibilities would be difficult.
You would have to explicitly list each sub-cluster with a range excluding
position 0, assuming the staging node is the first node in the list. For this reason
it is recommended that the administrator keep two versions of the configuration
file – one with and one without the staging node listed in its own list of
responsibilities. It is important to note that multiple configuration files are
allowed and only change the logical view of the cluster to the C3 command.

Here is an example of pushing a /etc/passwd to the entire system using a
configuration file where the staging nodes’ node is not include within their list
of responsibilities:

cpush --all --head /etc/passwd
cpush --all /etc/passwd

The first cpush with --head will push the passwd file to the head node and the
second cpush command line will push to the nodes in the staging node’s
responsibility list.

4. Miscellaneous

Two commands currently do not gain any benefit from the scalable execution
model. Cpushimage will not function properly – specifically it will fail.
Currently systemimager[5], used by cpushimage, does not support staging of
images on other machines. However, is possible to create a staging node image
that contains the standard nodes’ image and then push that image to only to the
staging nodes. Next, tell each of the staging nodes to propagate that image to the
nodes in their list of responsibilities. This process will result in all nodes
receiving their image. While this gains the parallelism of the scalable execution
model it takes a significant amount of disk space and is difficult to maintain.
The server must maintain three complete images; it’s own operating image, a
staging nodes image, and a compute node’s image. These images must be
maintained correctly or the entire cluster may have system errors as a result of a
cpushimage. For example: to get the first set of images:

1. build compute nodes.
2. build staging nodes.
3. take compute node image on staging nodes.
4. take staging node image on head-node.

This must be repeated for every change required in the stable image. Next, to
propagate an image out to the cluster will require:

cpushimage --all --head staging_image

This will update all the staging nodes with the image “staging_image” stored on
the local machine. Next, to push “node_image” too all the nodes in their
respective staging node responsibilities list:

cpushimage --all node_image

Here, it is extremely important that the staging nodes are not included in their
lists of responsibilities. The effect of cpushimage will be random if the staging
node includes itself in its list of responsibilities. The result will depend on when
the process was started and when the image update is applied to the image
storage area. the new update will delete the information being synchronized
during the rsync operation.

The other command that will not benefit from the scalable execution model is
cget. Cget will still function properly, however it will probably not gain much
parallelism, as it is a gather operation with many machines communicating to a
single machine.

5. Performance Analysis

The tests presented here were run on eXtreme TORC, ORNL’s 64 node cluster.
The operating system was a stock RedHat 7.3[6] system with OSCAR[7][8]
version 2.1 installed for clustering services. Each node is a 2.0 GHz pentium4
with 768 MB of RAM. The tests were run over an Intel Ethernet pro 100 Mbit
Ethernet adapter with a Foundry FastIron II switch.

The cluster was divided into four sub-clusters with each staging node containing
16-nodes in its list of responsibilities. Each staging node contains a self-
reference in its configuration block. Both wall-clock time required for the
command as well as server load was recorded. Four files were pushed with
cpush, a 1, 10, 100, and a 1000 Megabyte file. The scalable runs are divided into
three categories. Staging is moving the file from the head-node of the cluster to
the staging nodes. Fan-out is the time for a staging node to transfer the file to
their list of responsibilities. Scalable total is total the time taken. Load average
is not relevant here since there is no recorded load average for the compute
nodes. The last line is provided for a comparison to the non-scalable execution
mode of C3.

1 Megabyte
 Total Time Taken Load Average head
Staging 2.36s n/a*
Fan-out 14.35s .80
Scalable Total 16.71s not relevant
Non-Scalable 31.70s 10.57
* Insufficient time was required to result in a change of load for the head node.

10 megabyte
 Total Time Taken Load Average
Staging 12.43s 1.27
Fan-out 44.98s .80
Scalable Total 57.51s not relevant
Non-Scalable 2m 52.99s 48.03

100 megabyte
 Total Time Taken Load Average
Staging 1m 54.06s 3.30
Fan-out 5m 57.21s .80
Scalable Total 7m 51.27s not relevant
Non-Scalable 27m 00.67s 55.48

1000 megabyte
 Total Time Taken Load Average
Staging 20m 06.72s 16.48
Fan-out 59m 36.34s .80
Scalable Total 1h 19m 43.06s not relevant
Non-Scalable 4h 28m 27.90s 55.51

From these results, it is clear that the change to the scalable execution model
results in a significant speedup when compared to the non-scalable execution
model. While this result itself is rather significant, another significant effect of
this model is the relative “unloading” of the cluster’s head node. When
transferring large files using the non-scalable execution model, the head-node is
nearly unusable during the run. This is so disruptive that other users cannot even
log onto the head node during a file transfer. When using the scalable version of
C3, the machines performance was impacted, however the cluster remained a
usable resource.

6. Conclusion

This paper discussed the first scalability release of the C3 Power Tools (version
4.0) from Oak Ridge National Laboratory. Presented material included a brief
introduction to the operation of standard (version 3.x release) C3 commands,

their command line interface (CLI), as well as the associated configuration file
syntax and semantics. This was followed by an introduction to the latest C3
release (version 4.0 also known as the scalability release), which emphasizes a
new scalable component that enables the C3 Power Tools to scale its operation
to 1000’s of cluster nodes. The scalability release’s CLI syntax was presented as
well as the requisite changes and new semantics of the configuration file.
Finally, a number of tests were run across ORNL cluster computing facilities to
provide real-world numbers that show the performance improvement and
scalability of this new C3 release.

While we are pleased with the improvements that this release brings, plans are in
the works to continue in this direction to provide an even more scalable and
faster C3 Power Tool suite. It is anticipated that the first iteration of this next
release (version 5.0) will arrive later this year.

7. References

[1] “C3 Power Tools,” (with B. Luethke), Commodity, High-Performance

Cluster Computing Technologies and Applications, The Sixth World
Multiconference on Systemics, Cybernetics, and Informatics (ISAS
SCI2002), July 16, 2002, Orlando, FL.

[2] “C3”, http://www.csm.ornl.gov/torc/C3/
[3] “PERL”, http://www.perl.org/
[4] “Python”, http://www.python.org/
[5] “SystemImager”, http://www.systemimager.org/
[6] “Redhat”, http://www.redhat.com/
[7] Thomas Naughton, Stephen L. Scott, Brian Barrett, Jeff Squires, Andrew

Lumsdaine, and Yung-Chin Fang. The Penguin in the Pail – OSCAR
Cluster Installation Tool. In Proceedings of SCI’02: Invited Session –
Commodity, High Performance Cluster Computing Technologies and
Application, Orlando, FL, USA, 2002

[8] “OSCAR”, http://www.OpenClusterGroup.org/OSCAR

cluster first { # The default cluster (first in the list) and a
direct local cluster

external:internal # the head-node
node1 # compute nodes
node2
dead node3 # offline node w/o node ranges

}
cluster second { # direct remote - notice that unlike cluster

first the head node is not the local machine
xtorc
node1
node2
dead node3

}
cluster feanor { # direct remote cluster

feanor:node0 #example of node ranges
node[1-64]
exclude 4 # setting nodes offline in a range
exclude [32-37] # node can be marked offline in

ranges also
node[128-132]

}
cluster torc { # indirect remote cluster

:torc # external interface of remote
cluster
}

FIGURE 1: sample configuration file

cluster don’t_use { # notice below that what separates dead
and exclude from being hostname is that
in the case of "dead" there are two
words on a single line. In the case of
“exclude” there is a space between the
word exclude and the range. While this
is possible it is not recommended.

external:internal # head-node
dead # first node named "dead"
dead dead1 # second node "dead1" offline
exclude[1-64] # 64 nodes exclude1..exclude64
exclude [5-6] # exclude5 and exclude6 are

offline
exclude 8 # exclude8 is offline

}

FIGURE 2: configuration file with
poor naming technique

cluster part1 {
node1
node[2-8]

}
cluster part2 {

node9
node[10-16]

}
cluster part3 {

node17
node[18-24]

}
cluster part4 {

node25
node[26-32]

}
cluster part5 {

node33
node[34-40]

}
cluster part6 {

node41
node[42-48]

}
cluster part7 {

node49
node[50-56]

}
cluster part8 {

node57
node[58-64]

}

FIGURE 3: 8 8-way configuration file

cluster part1 {
:node1

}
cluster part2 {

:node9
}
.
.
.
cluster part8 {

:node57
}

and node1 would have the following specification while the
others would also follow suite.

cluster part1 {
node1
node[2-8]

}

FIGURE 5: indirect staging nodes

FIGURE 4: 8 8-way for total of 64 nodes

cluster part1 {
node1
node[1-8]

}
cluster part2 {

node9
node[9-16]

}
.
.
.
cluster part8 {

node57
node[57-64]

}

FIGURE 6: staging nodes, listing self

