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ABSTRACT

Thermochemical processes are the primary candidates to produce hydrogen (H2) using high-

temperature heat from nuclear reactors.  The leading thermochemical processes have the same high-

temperature chemical reaction (dissociation of sulfuric acid into H2O, O2, and SO2) and thus all require

heat inputs at temperatures of -850EC.  The processes differ in that they have different lower-temperature

chemical reactions.  The high temperatures are at the upper limits of high-temperature nuclear reactor

technology.  If peak temperatures can be reduced by 100 to 150EC, existing reactor technology can be

used to provide the necessary heat for H2 production and the H2 produced using nuclear reactors becomes

a much more viable near-term industrial option.  If process pressures can be increased, significant

reductions in capital cost and improvements in efficiency may be possible.

The use of inorganic separation membranes is proposed to drive the dissociation reaction to

completion at lower temperatures and higher pressures.  ORNL has developed a variety of inorganic

membranes for commercial applications and has initiated a program to develop a membrane to separate

SO3 from its dissociation products.  The basis for using such membranes is described herein.  A test loop

is being constructed, and membrane testing is expected to be initiated before the end of 2003.

1.  INTRODUCTION

Three of the four highest-rated H2 thermochemical processes (hybrid, sulfur–iodine, and Ispra

Mark 13) have the same high-temperature step that requires heat input at 850ºC at -10 bar.1  The highly

endothermic (heat-absorbing) gas-phase reaction in each of these processes is as follows:

2H2SO4 ø 2H2O + 2SO3 ø 2SO2 + 2H2O + O2   (850EC)                                              (1)
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The three processes have different chemistries at lower temperatures.  As shown in Fig. 1, the “Base

Case” high-temperature step on the left (Equation 1) can be coupled with any of the three sets of lower-

temperature chemical reactions on the right to produce H2.  The sulfur–iodine process1 has two other

chemical reactions (Equations 2 and 3) that, when combined with Equation 1, (1) yield H2 and O2 from

water and heat and (2) recycle all other chemical reagents.

I2 + SO2 + 2H2O ÷ 2HI + H2SO4   (120EC)                                                         (2)

2HI ÷ I2 + H2  (450EC)                                                                           (3) 

The hybrid sulfur process (also known as Westinghouse, GA-22, and Ispra Mark 11) has a single

electrochemical step (Equation 4) that completes the cycle.2

SO2(aq) + 2H2O(l) ÷ H2SO4(aq) + H2(g)  (Electrolysis:  80EC)                         (4)

The Ispra Mark 13 process has one chemical reaction (Equation 5) followed by one electrochemical

reaction (Equation 6) that completes the cycle.

Br2(aq) + SO2(aq) + 2H2O(l) ÷ 2HBr(g) + H2SO4 (aq)   (77EC)                        (5)

2HBr(g) ÷ 2Br2(l) + H2(g)  (Electrolysis: 77EC)                                   (6)

In each of these cycles, the high-temperature sulfur trioxide (SO3) dissociation reaction (Equation 1)

is an equilibrium chemical reaction that requires heat and a catalyst.  Table I shows this equilibrium3, 4 as

a function of temperature and pressure.  High temperatures and low pressures drive the reaction towards

completion.

Detailed studies have concluded that the peak temperatures need to be very high (850ºC) to drive the

SO3 decomposition to near completion.  After the high-temperature dissociation reaction, all the

chemicals must be cooled to near room temperature, the SO2 separated out and sent to the next chemical

reaction, and the unreacted H2SO4 (formed by recombination of SO3 and H2O at lower temperatures)

reheated back to high temperatures.  Unless the chemical reactions go almost to completion, the energy

losses in separations and in the heat exchangers to heat and cool all the unreacted reagents (H2SO4) result

in a very inefficient and uneconomical process.  This phenomenon is illustrated in Fig. 2, in which the

overall efficiency of one variant of the sulfur–iodine process5 is shown as a function of temperature.  In

this flowsheet, the process inefficiencies (temperature loses in heat exchangers, etc.) increase so rapidly

with decreasing temperature (incomplete SO3 dissociation) that the process cannot produce H2 at

temperatures below 700°C.
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Fig. 1.  Sulfur family of thermochemical cycles.
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Table 1.  Thermodynamic Equilibrium for H2SO4 Decomposition

Equilibrium Fraction of Sulfur As

Pressure
(Bar)

Temperature
(EC) % SO2(g) % SO3(g) % H2SO4(g)

1 700 54 46 0.1

1 800 76 24 0.02

1 900 88 12 0.004

1 1000 94 6 0.001

10 700 31 67 1.7

10 800 53 46 0.4

10 900 72 28 0.1

10 1000 84 16 0.03

100 700 14 69 17

100 800 30 64 6

100 900 48 50 2

100 1000 64 35 1
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Fig. 2.  Efficiency of the iodine–sulfur process vs temperature.

There are strong incentives to lower the temperature and increase the pressure at which SO3

dissociates—the exact opposite of the conditions required by thermodynamic considerations.

1. Lower temperatures.  A major challenge to thermochemical H2 production is the high temperature
required for efficient H2 production, which is at the limits of nuclear reactor technology.  After the
temperature losses in heat exchangers between the reactor coolant and chemical plant are accounted
for, the 850EC process temperature implies that the peak nuclear reactor temperature will be
significantly higher.  If this temperature could be lowered to 700ºC, current6 and advanced7 designs of
high-temperature reactors could be used for H2 production.  Lowering temperatures would also have
major benefits in the thermochemical plant by reducing the costs and corrosion challenges in the
high-temperature sections of the process.

2. Higher pressures.  If the thermodynamics of SO3 dissociation could be overcome, higher-pressure
operation would improve economics and process efficiency.  Higher pressures would reduce
equipment size and gas compression losses.  Morever, higher pressures would improve efficiency for
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processes such as the hybrid process, in which the product SO2 is separated from O2 by sorption in
water.  At low pressures, the water must be refrigerated to absorb the SO2.  At higher pressures, this
absorption occurs above room temperature and no refrigeration plant is required.

We propose to shift the SO3 dissociation equilibrium to SO2 and O2 at lower temperatures and higher

pressures by the use of an inorganic separation membrane.8  The peak temperature may be lowered by up

to 150EC.  This is accomplished by the separation of SO2, H2O, and O2 from the SO3 at 650 to 750EC.  If

these reaction product gases are removed, the remaining SO3 (with a catalyst and heat) will disassociate

into its equilibrium concentrations.  If the reaction gases can continue to be selectively removed, the

chemical reaction can be driven to completion.  The membrane operates with high pressure on one side

and a lower pressure on the other side, and this pressure difference drives the separation process.

Inorganic membranes have historically been used to separate uranium isotopes by gaseous diffusion. 

In recent years, Oak Ridge National Laboratory has developed several inorganic membranes for chemical

separations.  These membranes are now commercial products.  Work has been initiated on inorganic

membranes to separate SO2, H2O, and O2 from SO3.  This paper describes the initial analysis and

characteristics of these membranes.  An experimental test system is under construction to test these

alternative membranes.

II.  ALTERING THE EQUILIBRIUM SO3 DISSOCIATION WITH
INORGANIC SEPARATION MEMBRANES

Figure 3 shows a schematic of an idealized high-temperature chemical reactor with inorganic

membrane separator.  The top of the figure shows the arrangement of equipment while the bottom of the

figure shows the reactions within tubes within the main process equipment.

• Dissociation.  The vaporized mixture of H2SO4, SO3, and H2O enters the chemical reactor, where the
catalyst with added heat dissociates the SO3 into SO2 and O2.  (The H2SO4 does not require a catalyst
to dissociate into SO3 and H2O.)  The design of the chemical reactor is similar to a heat exchanger
where the catalyst is inside the tubes that enables the heat-absorbing chemical dissociation to occur.
The hot fluid that transfers heat from the nuclear reactor to the high-temperature chemical reactor will
likely be either helium or a molten salt.

• Membrane separation.  The resulting SO3, SO2, O2, and H2O mixture from the chemical reactor flows
into an inorganic membrane separator.  Some fraction of the SO2, H2O, and O2 reaction products
flows through the membrane walls into a lower pressure zone and onto the rest of the thermochemical
cycle.

• Recycle of unreacted chemicals.  The gases that did not flow through the membrane walls and exited
the ends of the membrane separation tubes (SO3 with some remaining SO2, O2, and H2O) are
compressed, mixed fresh feed, and flow back to the chemical reactor, where more of the SO3
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dissociates.  Unreacted chemicals are recycled through the system until decomposed and flow through
the membrane walls.  The pressure drop across the chemical reactor (catalyst bed) and through the
membrane separator (but not the membrane wall) is low.  With an ideal membrane, the SO3 can be
fully decomposed.  With real membranes, some fraction of the SO3 will flow through the membrane
with the SO2, H2O, and O2.

Fig. 3.  Membrane reactor system with recycle of unreacted reagents.
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III.  PRINCIPLES OF INORGANIC MEMBRANE OPERATIONS

Membrane separation processes operate by having a higher pressure on one side of the membrane and
lower pressure on the other.  The relative rates of transport of different molecules through the membrane
determine the capability of the membrane to separate different gases.  There are multiple gas-transport
mechanisms:9  viscous flow, molecular diffusion, Knudsen diffusion (basis for isotopic separation of
uranium isotopes by gaseous diffusion), surface diffusion, capillary condensation, and nanopore
diffusion.  The precise transport mechanism that is dominant for each gas depends upon a variety of
physical factors including temperature (T), pressure (P), molecular mass (m), pore diameter (dp),
molecular size and shape, pore surface composition, pore morphology, and mutual interactions between
molecules traversing the membrane.

For high-temperature separations, an inorganic membrane using nanopore diffusion is preferred.  This
is a term that encompasses several distinct mechanisms that take place in nanometer-diameter pores.  For
larger molecules, the membrane may function effectively as a molecular sieve, eliminating the transport
of molecules through the membrane and giving high separation factors.  For smaller molecules, the
transport exhibits thermally activated behavior—that is, as the temperature is increased, the permeance
(membrane throughput per unit area) increases exponentially, rather than decreases as in Knudsen
diffusion.  One thermally activated mechanism that has been understood is termed “gas translational
diffusion.”  It is also referred to as “thermally activated Knudsen diffusion,” where again molecules jump
between pore walls but with an activation barrier that must be overcome in order to make a diffusion
jump.  This thermally activated characteristic is similar to the diffusion of defects or atoms in the solid
state in the presence of traps, with an activation energy (Ed).  Physically this is plausible, since the lower
limit on size of a pore must correspond to interatomic spacing in the solid state.  In the regime for dp

-1 nm, separation factors >100 are possible.  For example, Uhlhorn et al. report9 that a separation factor
>200 has been measured for a mixture of H2 and C3H6 gases using a supported amorphous silica
membrane with a pore diameter of -1 nm.

Nanopore separations improve with temperature.  In contrast, separation processes such as Knudsen
diffusion, which decrease with temperature, are not candidates for high-temperature separations because
of the low throughput of inorganic membranes.  The separation factor for a mixture of two gases is
defined as [y/(1!y)]  [(1!x)/x].  Here, y is the concentration of the fastest-permeating component on the
permeate side of the membrane and x is the concentration of the fastest-permeating component on the
feed side.  The experimentally measured performance for one simple system is shown in Figs. 4 and 5. 
Figure 4 shows how the separation factor for a nanoporous membrane separating helium from SF6

changes with temperature, while Fig. 5 shows the dramatic increases in membrane permeability
(throughput) as the temperature of such membranes increases.
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for membrane 2528.

Fig. 5.  Helium permeance vs temperature for membrane 1230252-8a.
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IV.  PROCESS EFFICIENCY

From a thermodynamic perspective, lower temperatures would be expected to reduce the process
efficiency because mechanical work is required to provide the pressure difference (a few bar) across the
inorganic membrane to drive the separation process.  In practice, it is unclear whether the process will be
more efficient or less efficient.  The irreversible losses in heat exchangers to heat and cool reagents are
the primary source of inefficiencies between an ideal process and the real process.  Inorganic membranes
reduce these inefficiencies by driving the high-temperature reactions to completion and thus reduce the
quantities of unreacted chemicals recycled in the process.  Ongoing work is under way to quantify these
effects.

If higher temperatures become available, a strong incentive remains to use inorganic membranes
because the membranes allow the dissociation reaction to proceed at higher pressures (Table I).  Higher
pressures reduce equipment size and improve efficiency.  Economics drives many chemical processes to
operate near 100 bar.  Based on these considerations, there are incentives to use inorganic membranes at
temperatures to 1000EC.

V.  EXPERIMENTS

A combination of experiment and theory is used to develop new membranes.  Lower-temperature
inorganic membranes are commercially used for a variety of applications; however, high-temperature
membranes have not yet been commercialized.

Based on theory, a series of existing inorganic membranes have been selected for testing.  Most of
these membranes have pore sizes on the order of 1 nm.  Nanopore diffusion is expected to be the primary
separation mechanism.  The results of these tests will be combined with theory to develop a custom
membrane designed for this specific separation.

The initial testing of these membranes is done by measuring the permeance of pure gases (H2O, O2,
SO2, and SO3) as a function of temperature and pressure.  The gas flow per unit surface area is measured
as a function of pressure drop and temperature.  Under most conditions, the interactions between
molecules are small.  Consequently, the measured permeance of the individual gases can be used to
predict the separation performance.  The best membranes are then subjected to separation tests using gas
mixtures.  After the initial selection of the membranes, tests will be conducted on gas mixtures.  The test
loop for these corrosive materials is under construction and will be operational in the fall of 2003.  Initial
experimental results will be available in early 2004.  Figure 6 shows a simplified schematic of the
membrane test loop that is being constructed.  It will require several years of work before definitive
technical and economic conclusions can be reached regarding the viability of inorganic membranes for
this application.
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