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The Advance High-
Temperature Reactor

A Large, Passively Safe, High-
Temperature Reactor for Electricity 

and Hydrogen Production 

• Large Reactor (>2000 MW(t)) to Improve 
Economics

• Passive Safety
− Passive decay heat cooling
− Fuel to survive beyond-design-basis accidents



High-Temperature Reactors
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Key Reactor Characteristics

Reactor fuel
Reactor coolant



The AHTR Uses Coated-Particle Graphite Fuels
(Similar to Helium-Cooled Reactors; Failure Temperature >1600ºC)
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The AHTR Uses A Molten Salt Coolant

Good Heat Transfer, Low Pressure Operation, 
In-Service Inspection, and Boiling Point ~1400ºC

MSRE Intermediate Heat
Transfer Loop Used Clean Salt



The Advanced High Temperature Reactor
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• Transportable 
vessel
− Same size as S-

PRISM 1000 MW(t) 
vessel

− Similar size to 600 
MW(t) GT-MHR 
reactor vessel 

• Down-flow molten 
salt

• MHTGR annular 
core

Conceptual 2400 MW(t) AHTR Design

03-155



AHTR Lowers Peak Coolant Temperatures For 
A Given Temperature Of Delivered Heat
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Passive Safety

Decay Heat to the Reactor Vessel 
Wall With Silo Cooling 

Same approach as Modular High-Temperature 
Gas-Cooled Reactors and the General Electric 

Sodium-Cooled Modular S-PRISM
However

Molten Salt Allows Larger Reactor Sizes
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In An Emergency, Decay Heat Is Transferred To The 
Reactor Vessel And Then To The Environment
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Heat Rejection: Temperature Dependent
- LMR: 500-550 C [~1000 Mw(t)]o

- AHTR: 750-1000 C [>2000 Mw(t)]o
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Evolution Of Passive Decay Heat Removal Systems In 
Similar Size Vessels Enables Design of Larger Reactors 
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Beyond-Design-Basis Accident 
(BDBA)

Goal: No major fuel failures after failure of the 
decay-heat system and structural systems

Same strategy as 600 MW(t) Modular High-
Temperature Gas-Cooled Reactor (MHTGR)



If The Goal Is To Withstand All Accidents, 
Reactor Size Is limited (MHTGR Example)
• To prevent radionuclide 

releases, must not have 
catastrophic fuel failures

• If catastrophic fuel failure is to 
be prevented in an accident, 
the fuel must not overheat

• Decay heat raises fuel 
temperature

• Capability to remove decay 
heat under all circumstances 
determines the largest reactor 
that can be built with beyond-
design-basis safety

• MHTGR (helium cooled) decay 
heat is conducted to ground in 
a beyond design basis accident 
(BDBA)

Reactor building

Grade
level



The Maximum Size MHTGR (Gas Cooling) 
With BDBA Safety Is 600 MW(t)

(Fuel Temperature Limit is 1600ºC)



A 2400 MW(t) AHTR May Withstand 
BDBAs Without Fuel Failure

• Reactor vessel heat up
• Vessel Failure
• Silo wall heat conduction
• Secondary salt melting
• Heat Conduction to earth



The MHTGR (600 MW(t)) And AHTR (2400MW(t)) 
Have Similar Decay-Heat Vessel Heat-Up Rates
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Beyond-Design-Basis Accident Avoids Catastrophic Fuel 
Failure By Decay-Heat Conduction To The Environment 
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Liquid Cooling Results In More Efficient 
Heat Transfer To The Silo Wall
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Many Options Exist To Boost Decay Heat 
Removal With A Silo Full Of Molten Salt
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Economics

Larger Reactors Have the Potential for  
Lower Capital and Operating Costs

Molten Salt Preferred for Heat Transfer 
From Any Reactor to Hydrogen Plant



Equipment Comparisons Suggest AHTR Capital 
Cost Per MW(t) Is Less Than A Modular Reactor
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Pressure Vessels For 
2400 MW(t) of HTGRs

Low-Pressure Vessel For 
2400 MW(t) of ATGR
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Simple scaling laws estimate AHTR per kilowatt capital costs at 
60% of a Modular High Temperature Gas-Cooled Reactor

Simple scaling laws estimate AHTR per kilowatt capital costs at 
60% of a Modular High Temperature Gas-Cooled Reactor



Potential for Better Economics Than 
Light-Water Reactors

• Potential economic advantages of AHTR
− Higher thermal-electric efficiency (50% versus 33%)

• Fuel savings
• Smaller secondary systems

− Brayton helium cycle (Smaller than steam turbine)
− Low pressure containment

• But no definitive economic comparison
− LWR technology is significantly different; thus, simple 

scaling comparisons can not be made



Conclusions
• AHTR goals

− Improve economics with larger high-temperature reactor
− Same passive safety basis as modular reactors

• Passive decay-heat removal
• BDBA decay heat removal (no catastrophic fuel failure)

• Technology based on
− High-temperature fuel (Failure temperature >1600ºC)
− Low-pressure high-temperature coolant 

• Molten fluoride  salt
• Boiling point ~1400ºC

• New reactor concept 
− Early in development
− Major uncertainties


