
Visibility Culling Using Plenoptic Opacity Functions
for Large Volume Visualization

Jinzhu Gao∗ ¶

The Ohio State Univ.
Jian Huang†

The Univ. of Tennessee
Han-Wei Shen‡

The Ohio State Univ.
James Arthur Kohl§ ¶

Oak Ridge National Lab

Abstract

Visibility culling has the potential to accelerate large data visualiza-
tion in significant ways. Unfortunately, existing algorithms do not
scale well when parallelized, and require full re-computation when-
ever the opacity transfer function is modified. To address these is-
sues, we have designed a Plenoptic Opacity Function (POF) scheme
to encode the view-dependent opacity of a volume block. POFs are
computed off-line during a pre-processing stage, only once for each
block. We show that using POFs is (i) an efficient, conservative and
effective way to encode the opacity variations of a volume block
for a range of views, (ii) flexible for re-use by a family of opacity
transfer functions without the need for additional off-line process-
ing, and (iii) highly scalable for use in massively parallel imple-
mentations. Our results confirm the efficacy of POFs for visibility
culling in large-scale parallel volume rendering; we can interac-
tively render the Visible Woman dataset using software ray-casting
on 32 processors, with interactive modification of the opacity trans-
fer function on-the-fly.

CR Categories: I.3.1 [Computer Graphics]: Parallel processing—
; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—visible line/surface algorithms

Keywords: visibility culling, volume rendering, plenoptic opacity
function, large data visualization

1 Introduction

A growing number of scientific and medical applications are now
producing very large datasets, ranging from gigabytes to terabytes,
on a daily basis. Such immense data require sophisticated tech-
niques for analysis and presentation; scientific visualization is an
indispensable tool for analyzing and understanding those datasets.
However, as dataset sizes increase, the usability of traditional vi-
sualization approaches is severely challenged, with high require-
ments on the necessary storage, computation speed and network

∗e-mail: gao@cis.ohio-state.edu
†e-mail: huangj@cs.utk.edu
‡e-mail: hwshen@cis.ohio-state.edu
§e-mail: kohlja@ornl.gov
¶Research supported in part by the Mathematics, Information and Com-

putational Sciences Office, Office of Advanced Scientific Computing Re-
search, U. S. Department of Energy, under contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

bandwidth. Faster rendering hardware and optimized algorithms
are unlikely to prove sufficient to address the full breadth of chal-
lenges faced by visualization researchers in the near future. More
intelligent and novel methods must be designed and developed to
minimize the data movement and processing overheads, thereby in-
creasing the level of interactivity in viewing very large datasets. In
this paper, we specifically focus on the subject of volume rendering
in the context of large volume visualization.

Among several possible alternatives, visibility culling is a pop-
ular technique that eliminates unnecessary visualization computa-
tion. Yet while visibility culling can accelerate the rendering speed,
larger datasets also require more tractable data management, as well
as massive-scale parallelism. It is crucial to have scalable paral-
lel solutions for determining the visibility of coarse-grained groups
of voxels, or volume blocks. Previous visibility assisted parallel
visualization algorithms, such as [Huang et al. 2000b; Gao and
Shen 2001], are difficult to scale efficiently in massively parallel
environment because of the significant inter-processor dependen-
cies needed to maintain a globally coherent opacity buffer. The
main challenge is due to the difficulty of knowing the exact set of
visible blocks before the rendering is finished. In addition, parallel
volume rendering algorithms with visibility culling are also subject
to the specific underlying opacity transfer function. Each time the
opacity transfer function changes, the whole process of visibility
determination must be repeated. This greatly hinders interactive
exploration for large-scale datasets.

In this paper we advocate a coarse-grained approach to visibil-
ity culling, based on a novel way to encode pre-computed view-
dependent opacity of a volume block. Our new representation of
view-dependent opacity is based on Plenoptic Opacity Functions
(POFs). Our key research motivation is that the opacity variation
of a volume block under all external viewpoints can be treated as
a function defined on spherical coordinates. This opacity func-
tion possesses a high coherence and, hence, can be represented
in compact mathematical terms using conservative approximations.
Therefore, a POF representation of a volume block is space effi-
cient and can be reused for all possible views outside the block, i.e.
it is plenoptic. Further, a block’s opacity information must not al-
ways be re-computed for each new opacity transfer function. We
have discovered, through rigorous mathematics deduction, that an
existing POF representation of a volume block can be accurately
reused for all opacity transfer functions sharing the same set of ba-
sis functions, without the need to re-compute. This set of functions
is referred to as a family of opacity transfer functions. POFs are
conservative and effective in visibility culling, are fast to compute
off-line, and can be evaluated during run-time for opacity determi-
nation under an arbitrary view angle. Using POFs, scalable visibil-
ity culling can be done on a coarse-grained level, for both online
parallel processing and out-of-core computation. We have experi-
mentally tested the efficacy of POFs for visibility accelerated par-
allel volume rendering, and have interactively rendered the Visible
Woman dataset in software using 32 processors. The POF solu-
tion allows modification of the opacity transfer function on-the-fly
without loss of interactivity.

While early ray termination is the widely accepted foundational
idea behind all visibility culling methods in volume rendering, the

341

IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8120-3/03/$17.00 ©2003 IEEE

Administrator
The DVD-ROM also contains a printer quality version of this document.

compelling diversity of visibility acceleration algorithms proposed
over the years [Livnat and Hansen 1998; Parker et al. 1998; Huang
et al. 2000b; Gao and Shen 2001] reflects the very nature that a
universal way to implement this concept does not exist. A spe-
cific scenario may require a solution uniquely optimized to its very
setting. Indeed, it is fair to regard our framework as a scalable in-
stantiation of the basic concept of early ray termination to be used
in parallel settings to render large volumes with a family of transfer
functions. Using POFs, we avoid the otherwise significant system
overhead from excessive interdependence among large numbers of
processors for early ray termination and drastically different access
bandwidth of volume data due to unpredictable nature of occlusion.
Further, our approach uses a low overhead one-time precomputing
step to support a family of transfer functions of an infinite number.

In the remainder of this paper, we briefly discuss the background
of large volume visualization and visibility culling (Section 2). The
details of POF, our parallel volume rendering algorithm and exper-
imental results are presented in Sections 3 through 5, respectively.
In Section 6, we summarize our contribution and conclude with a
discussion of possible future work.

2 Related Work

The definition of “large” with respect to dataset size continues
to evolve by orders of magnitude, from Gigabytes and Terabytes
now to Petabytes in the near future. Scientific visualization is an
indispensable tool to glean scientific insights from such massive
datasets, as can be seen by the wealth of publications with pioneer-
ing research results. Approaches for more efficient rendering have
been proposed, such as large-scale parallelism [Ma et al. 1994; Ma
and Crockett 1997], hardware acceleration [Lum et al. 2002], visi-
bility culling [Livnat and Hansen 1998; Parker et al. 1998; Huang
et al. 2000a; Gao and Shen 2001; Klosowski and Silva 2001] and
compression mechanism [Bajaj et al. 2000; Guthe et al. 2002]. For
large volume visualization, it is imperative to utilize as many pro-
cessing units as possible, but in an efficient and scalable manner.
Inter-process communication and synchronization overheads must
be reduced to a minimum. As even special purpose hardware has
a limited number of resources, intelligent algorithms must be de-
signed to manage memory efficiently, especially when paging a
large dataset in and out [Zhang et al. 2001].

2.1 Visibility Culling

In order to reduce the cost of unnecessary computation, a number of
visibility culling methods have been proposed, especially for poly-
gon rendering applications [Greene 1996; Zhang et al. 1997; Wonka
et al. 2001]. A multidisciplinary survey on 3D visibility was given
by Durand in [Durand 1999]. In volume visualization, visibility
culling aims to eliminate occluded portions of the data volume, as
early as possible in the visualization pipeline, to reduce the render-
ing cost. Discovering and encoding visibility information has often
been rather expensive, and is strictly dependent on the given opac-
ity transfer function. Also, most culling methods do not easily scale
in parallel settings [Huang et al. 2000b; Gao and Shen 2001].

The early ray termination method used for ray casting [Levoy
1988; Levoy 1990] was one of the first approaches in volume ren-
dering to utilize an occlusion heuristic for acceleration. A ray-front
scheme was introduced by Law and Yagel [1996] to take advantage
of both the image-order and the object-order traversal and avoid
thrashing. Image-aligned sheet-based splatting [Huang et al. 2000a]
uses a summed area table of the opacity buffer to cull away a sin-
gle voxel or a group of voxels projected to a screen region whose
average opacity is already 1.0. However, due to the object-space
based nature of splatting, this incurs more overhead for visibility
culling than for ray-casting approaches. To accelerate isosurface

rendering, Livnat and Hansen [1998] proposed a view-dependent
isosurface extraction algorithm that utilizes a visibility culling tech-
nique similar to the one proposed by Greene [1996]. This algorithm
reduces both extraction and rendering time by culling away the oc-
cluded isosurface patches. However, visibility determination may
still incur extra overhead, which can be a potential performance
bottleneck. Parker et al.[1998] introduces an interactive ray tracing
algorithm to generate the visible portion of an isosurface. The al-
gorithm computes the intersection point of a ray and the isosurface
directly by solving a cubic equation, without explicitly extracting
triangles. In general, this algorithm is well-suited for parallel im-
plementation. Liu et al.[2001] defines an algorithm to extract the
visible isosurface progressively using both ray casting and propa-
gation.

Occlusion acceleration is very effective for datasets which con-
tain a large number of occluded regions. However, because visi-
bility culling is inherently sequential by nature, a scalable paral-
lel implementation is difficult to construct. It is also unlikely to
achieve a balanced workload after dynamically removing occluded
data, therefore few parallel rendering algorithms utilize visibility
culling. An effective parallel rendering algorithm with visibility
culling was developed by Huang et al.[2000b] for volume datasets
with heavy to moderate occlusion. The algorithm utilizes view-
dependent object-space data partitioning with an image-space task
partition. An occlusion map is also kept for culling occluded data.
Unfortunately, the algorithm incurs a global barrier for synchro-
nization of the opacity buffer for all processors on slab boundaries,
therefore it does not scale well for more than 16 processors. Par-
allel implementations of view-dependent isosurface extraction are
challenging because the visibility of most blocks is unknown be-
fore extracting the isosurface. To utilize visibility culling in parallel
isosurface extraction, Gao and Shen [2001] proposed a progressive
visibility culling method that can efficiently eliminate invisible iso-
surface triangles, achieving satisfactory parallel speedups.

To summarize, visibility culling for large volume visualization
must be very efficient with scalable parallel implementations, and
must be conservative while still remaining effective. Interactive
opacity computation while rendering is not feasible for large vol-
ume visualization. These facts have motivated our search for an
opacity representation of coarse-grained voxel blocks that enables
efficient visibility culling.

3 Plenoptic Opacity Function

Although occlusion acceleration for volume rendering seems to be
only effective for datasets showing a dominating amount of opaque-
ness, large datasets with highly transparent opacity transfer func-
tions can still benefit from visibility culling. Consider the following
example.

In [Max 1995], the opacity value along a viewing ray is com-
puted as follows:

α = 1−e−
∫ d

0 τ(t)dt = 1−e
−

l
∑

i=1

∫ si+1
si

τ(t)dt
= 1−

l

∏
i=1

(1−α(si)) (1)

where d is the total length of the viewing ray, which is broken into
l segments to compute the Riemann sum, and α(si) represents the
accumulated opacity value of each individual segment along the
viewing ray. In practice, using a step size of 1.0, we usually ap-
proximate α(si) with the opacities of sample points on the viewing
ray. For practical visibility culling, it is common to use a threshold
slightly lower than but close to 1.0, such as 0.95. In this case, as
soon as a pixel has reached 0.95 in opacity, the pixel is considered
fully opaque. With a highly transparent opacity transfer function,
where the opacity of every sample point is as low as 0.05, we can

342

determine the shortest length l for this viewing ray to reach full
opacity:

0.95 = 1−
l

∏
i=1

(1−0.05)

Solving for l we find that l = 58.4. That is, as long as a viewing
ray is more than 59 sample points in length, the corresponding pixel
will have reached full opacity. For a large dataset whose size is on
the order of 1000×1000×1000, being able to cull all voxels after
the first 59 non-empty sample points of only 0.05 opacity allows
significant acceleration. Therefore, visibility culling is useful for a
much wider spectrum of large scale dataset scenarios than expected.
The only exceptions are those relatively sparse datasets with a small
range of depth, which do not exhibit as significant of a performance
problem in the first place.

In the following, we describe a method to pre-compute and en-
code the opacity information for each volume block using a novel
Plenoptic Opacity Functions (POF) scheme. By “plenoptic,” we
mean that a single POF can capture the view dependent opacity of
a volume block for all possible external views. At run time, us-
ing the POFs for all blocks, scalable visibility culling is supported
without the need for global barriers [Huang et al. 2000b] or multiple
passes [Gao and Shen 2001].

3.1 The Design of POF

Because opacity computation at run time is expensive and can af-
fect the scalability of parallel applications, we aim to pre-compute
a large portion of such information during pre-processing, such that
run-time visibility determination is efficient and scalable. Our ratio-
nale is that the opacity variation of a volume block from all external
viewpoints can be considered as a function defined on spherical co-
ordinates. With any block, the rendered opacities obtained from
adjacent views should show a high degree of coherence, although
the exact intrinsics of such coherence may be complicated. But, in
coarse-grained visibility culling, occlusion of a block can depend
solely on the pixel with the lowest opacity within its screen pro-
jection area. Leveraging this observation, we opt to focus on the
minimal opacity value of a volume block among all pixels within
its screen footprint from every view and such minimal opacity value
will be considered conservatively as the opacity of the block in this
paper. In this way, the opacity of a block from every view can be
greatly simplified and encoded as a scalar function of two variables,
θ and φ , in spherical coordinates. This is in fact the form of POF
we use in our work. However, it is impractical to pre-compute and
store the opacities from all possible views. [Zhang and Turk 2002]
points out that the visibility information from a limited number of
sample views can be used to interpolate and estimate the visibility
information from any practical sample view. Therefore, by tak-
ing advantage of view coherence, we need to only pre-compute the
opacity information for a manageable set of evenly spaced sample
viewpoints.

As shown in Figure 1, when constructing a POF, we store the
minimal opacity values of a volume block, for all sample views, into
a 2D table. Here, a volume block, B, is rendered from view (0,0)
into an alpha (opacity) image, S. In the opacity image, we search for
the pixel with the lowest opacity, represented by the shaded pixel.
We refer to this pixel as qmin in this paper. Obviously the location
of qmin varies from view to view. The opacity value of qmin is then
stored at location (0,0) in a two dimensional table indexed by θ
and φ . This process is repeated for all locations in the discrete ta-
ble representing the POF, corresponding to all sample views. Each
view is parameterized as viewi, j = (θi,φ j) and the 2D table indeed
represents a function minopacity(θ ,φ) indexed by θ and φ . Occa-
sionally, due to insufficient sample rates along the dimensions of θ
and φ , sharp spikes may occur. In this case, one can always use a

Figure 1: For each view (left), the opacity channel of a volume
block B is rendered into a frame buffer. Suppose the pixel shaded
with blue has the minimal opacity among all non-empty pixels.
This minimal opacity value is stored into the entry shaded with
green in a 2D table indexed by θ and φ (right). The same process
is done for all sample views around block B.

classical noise reduction filter, such as a median filter, to conserva-
tively smooth out such singular data points. In addition, to ensure
the correctness of the minimal opacity value, the resolution of the
alpha image should be large enough so that a voxel’s projection area
is larger than a pixel in the alpha image.

Although there may be some undulations of minor amplitudes in
a POF function, the overall shape of variation should demonstrate a
smooth envelope signifying the underlying view coherence. Due to
such coherence, using more sophisticated mathematical represen-
tations could achieve higher storage efficiency, although keeping a
POF in discrete forms is also affordable. Potential candidates for
such representations include polynomials, splines, Fourier trans-
forms and Wavelets. However, it is critical for the compact mathe-
matical representation chosen to have a high run-time efficiency for
evaluation from any given viewpoint. As a note, no matter which
compression method is used, the opacity value from each view an-
gle in the compressed POF must not be larger than the value in the
corresponding entry in the original discrete POF table. In our algo-
rithm, we calculate a polynomial first and then shift it down until it
satisfies the criteria. We have experimented with both discrete table
and 3rd order polynomials as two options to store a POF, due to
their fast run-time evaluation. To represent a POF as a third order
polynomial, classical function fitting techniques [Press et al. 1992]
are used. After this pre-processing stage, each volume block has a
POF computed and stored for run-time visibility determination.

3.2 Run-Time Opacity Determination Using POFs

The POF we compute for each volume block is dependent on the
underlying opacity transfer function. When the opacity transfer
function is changed, the opacity of volume blocks can become to-
tally different, and therefore the POF must be re-computed, which
is time-consuming and limits the flexibility and interactivity of the
algorithm. In this section, we describe how the POFs can instead
be directly reused at run time when the opacity transfer function
changes. The basic idea is to construct the initial opacity transfer
function from a set of basis functions. We compute a set of POFs
for each of the basis opacity transfer functions at the pre-processing
stage. Then, at run time, a new opacity transfer function can be con-
structed simply by weighted summation of the basis set of opacity
transfer functions. We show below that the POFs can be directly
reused to determine the opacity of a volume block with high effi-
ciency.

343

3.2.1 Family of Opacity Transfer Functions

Our focus in this paper is on acceleration of volume rendering using
opacity culling. We discuss in this section how to extend our algo-
rithm to handle a large number of opacity transfer function with
merely a one-time precomputation. One should note that the sub-
ject of obtaining a meaningful transfer function, given an arbitrary
dataset is, however, beyond our scope. The base transfer functions
used in our work are obtained by partitioning transfer functions,
designed with approaches such as those in [Kindlmann and Durkin
1998; Pekar et al. 2001; Levoy 1988], into piecewise continuous
segments.

In [Kindlmann and Durkin 1998], higher opacities are assigned
to areas in the dataset that are most likely to have boundaries
present; this calculation is based on raw data values, as well as
the first and second derivatives of the raw data. [Pekar et al. 2001]
also provides an efficient method to detect the intensity transitions
in volume data automatically. Transfer functions can be extended to
multi-dimensional spaces as well [Levoy 1988], where opacity val-
ues can be determined using both raw data values and variations in
the strength of gradients. Subsequently, this has been shown to be
effective in data exploration when the opacity values of data can be
interactively scaled and translated under user control [Kniss et al.
2001].

After applying a transfer function design approach, such as
[Kindlmann and Durkin 1998], to the raw data, certain value inter-
vals representing boundaries are assigned non-zero opacity values.
There will be one basis opacity transfer function for each of such
value intervals. The basis functions can overlap each other in the
space of raw data values, however. Then scaling the opacity of sep-
arate basis functions individually by different factors can provide a
family of opacity transfer functions, each emphasizing the various
boundary areas to a different degree.

In α = 1− e−
∫ d

0 τ(t)dt , τ(t) is the extinction coefficient defined
along the viewing ray. The value of τ is commonly referred to as the
opacity of a sample point in the volume. Its value is view indepen-
dent and directly related to the opacity transfer function used. The
resulting α , however, represents the opacity accumulated along the
viewing ray, composed of a number of volume samples. The value
of α is also view dependent. Because of the direct relation between
the opacity of a volume sample and the opacity transfer function, in
this paper, we use the symbol of τ to represent opacity transfer func-
tions as well. Assuming an initial opacity transfer function is τ(v),
consisting of p basis functions, where the value of v is between the
minimum and maximum value of the raw data, we can represent the

opacity transfer function as: τ(v) =
p
∑

i=1
τi(v). The family of opacity

transfer functions using the basis functions is defined as

τ ′(v) =
p

∑
i=1

kiτi(v) (2)

Each opacity transfer function in the family is controlled by a scale,
ki, (ki ≥ 0, i ∈ [1 : p]), and τi(v)(i ∈ [1 : p]) are the basis functions
of the family.

For illustration purposes, in Figure 2, from the relationship be-
tween f ′ and f , a possible set of basis functions can be generated.
Each basis function emphasizes one area and can be scaled using
a different factor, ki (i ∈ [1 : 4]), to get different opacity transfer
functions belonging to a same family.

3.2.2 Opacity Determination for a Single Ray

In this subsection, we describe how the construction of the opacity
transfer function, as well as the scaling of the individual basis func-
tions, can be accounted for in determining the opacity information

(a) (b) (c)

Figure 2: An example illustrating the generation of basis opacity
transfer functions: (a) tooth dataset; (b) f’ versus f; (c) a possible
selection of a set of basis functions.

at run time. We show how the pre-computed accumulated opacity
for a single ray can be adjusted for each of the bases, τi(v), as scaled
by ki, directly from the same set of POFs. In the next section, we
will generalize this principle to update the opacity of a block.

According to [Max 1995], opacity along a viewing ray is com-
puted as α = 1− e−

∫ d
0 τ(t)dt . After scaling all the opacity values

along the viewing ray by a factor k, we can get a new opacity,
α ′ = 1− e−k

∫ d
0 τ(t)dt . It is easy to derive α ′ = 1− (1−α)k, which

describes how the final opacity would change when a single basis
is scaled by the factor of k. When an opacity transfer function τ(v)
consists of multiple basis functions, written as τi(v), only consider-
ing one basis function at a time, we obtain a separate opacity value,
αi, along the same viewing ray for each basis function:

αi = 1− e−
∫ d

0 τi(v(t))dt

Fortunately, from these separate opacities αi, the total opacity can
be computed as:

α = 1− e
−∫ d

0

p
∑

i=1
τi(v(t))dt

= 1−
p

∏
i=1

e−
∫ d

0 τi(v(t))dt = 1−
p

∏
i=1

(1−αi)

Assuming there are p basis functions in total, when each basis
function is scaled by a different factor, ki, we can obtain the accu-
mulated opacity of the ray as:

α ′ = 1−
p

∏
i=1

(1−α ′
i) = 1−

p

∏
i=1

(1−αi)
ki (3)

There are no approximations involved in the above derivation.
Therefore, for any opacity transfer function in the same family, the
final formula for computing the opacity for a single ray is exact.

3.2.3 Opacity Determination for a Volume Block

At run time, to determine the opacity of a block is very straightfor-
ward if a single basis, τ0(v), is used in the family of opacity transfer
functions. The process includes looking up the minimal opacity of
the current view from the stored POF computed for this basis, and
then inserting it into Equation (3) with a scaling factor, k, controlled
by the user. The resulting opacity is the opacity of the block in this
view using the opacity transfer function kτ0(v). This process is ex-
act, and does not involve any approximation.

When multiple bases are used, it is more complicated to deter-
mine the opacity of a block because the pixel showing minimal
opacity under one single basis may not be the pixel showing the
minimal opacity when all bases are considered. A trivial solution is
to compute a POF for each pixel in the block’s screen footprint for
each basis. At run time, we compute the true opacity of each pixel
according to Equation (3) and search for the minimal value. But this
process is too expensive in storage and inefficient in computation.

344

Figure 3: An example shows that, for each basis opacity transfer
function τi(v), the location of qmin can be different under different
views. Here we assume there are 3 basis opacity transfer functions.
A cell with a number i inside represents the pixel with minimal
opacity value for the basis opacity functions τi(v).

Instead, using POFs, we can compute the opacity of a block from
a given view by looking up the opacity from each POF and then in-
serting them into Equation (3), with the chosen ki’s. The resulting
opacity can then be considered as the opacity of the block. How-
ever, this method may be overly conservative for some datasets as
well as some opacity transfer functions even though it achieved sat-
isfactory culling performance in our experiments.

To improve the above approach for handing multiple bases, we
notice that the collection of qmin’s of all bases actually provides
a small but highly probable set of locations which the pixel with
minimal opacity may fall in from a given view. Obviously, from
a given view, the location of qmin for each basis function may be
different. We refer to this fact by saying each basis has a different
qmin. In addition, the location of a qmin is view dependent, illus-
trated by Figure 3. For p bases, we have only p qmin’s from a given
view. Thus, to support opacity determination of a block when mul-
tiple bases are used, we developed the following more aggressive
approach: for the basis, τi(v), we compute a POF from all sample
views as in previous sections; in addition, p−1 POFs are computed
for each of other p−1 bases at the location of τi(v)’s qmin from each
sample view. The purpose of keeping these extra p− 1 POFs is to
compute correct opacity at the location of τi(v)’s qmin, using Equa-
tion (3), under any view. Collectively, for each basis, the p POFs
are referred to as a POF set. Obviously, there are p POF sets for p
basis functions. When the user changes the opacity transfer func-
tion by manipulating individual weights, ki, we can compute the
opacity on each of the p qmin’s by using the modified values of ki
in Equation (3). The minimal value among these p resulting opaci-
ties is very likely to be the new opacity of a block. In this way, we
can have a better estimation as to which pixel may show the mini-
mal opacity after all bases are considered, without having to check
every pixel in the footprint.

As a summary, when a family of opacity transfer functions with
a single basis is used, determining the opacity of the block under
a given view is straightforward, efficient and conservative. When
multiple bases are necessary, one can directly use the multiple POFs
to get the opacity of a block conservatively, or use POF sets to
achieve a more aggressive opacity estimation. According to our
experiments, since visibility culling takes a negligible amount of
time, the two methods we have on multiple bases performed rather
similarly.

3.3 Visibility Determination using POF

Leveraging the mathematics equations developed in the previous
section, the POFs of each block are used for conservative run-time
visibility determination. For a given view (θ , φ), all volume blocks
are visited in a front-to-back order and an opacity buffer will be
used to store an accumulated opacity value for each pixel. To test
the visibility of each volume block, the screen footprint of the block

is computed, based on which the opacity buffer is queried. If all
values inside the screen footprint are beyond a pre-defined thres-
hold of opaqueness, say 0.95, then the volume block is identified as
invisible. Otherwise, the volume block is visible and the minimal
opacity value retrieved from the block’s POF (θ , φ) will be compos-
ited into the opacity values inside the block’s screen footprint. As
long as the front-to-back order is maintained, such visibility culling
is straightforward and carries a low overhead. Parallel execution
of the visibility tests further reduces the absolute time needed in
visibility determination.

4 Parallel Volume Rendering with POFs

To allow for interactive visualization of very large scale datasets,
computation can be done in parallel to accelerate the rendering pro-
cess. Visibility culling offers great potential to further speed up
parallel visualization algorithms. A parallel volume rendering al-
gorithm can be an ideal test case to demonstrate the efficacy of
POFs, using which, occlusion can be determined with negligible
overhead before rendering begins. It is possible to predict occlu-
sion in parallel and still allow for proper load balancing. Combined
with a suitable data distribution method, it is possible to achieve
highly scalable parallel rendering performance. Our algorithm is
described in more detail in the following subsections.

4.1 Data Distribution along Space-Filling Curves

To achieve a balanced workload distribution during run-time par-
allel volume rendering, an entire volume is first partitioned into
volume blocks. The distribution process is performed by travers-
ing the volume blocks along a space filling curve [Pascucci et al.
2003], such as a Hilbert curve, during which blocks are assigned to
processors in a round robin fashion.

The basic motivation for this static data distribution is that in
most datasets the data values are continuous. The visible parts of
these datasets are then likely to be contiguous with a high spatial
locality. Space filling curves dictate that a curve traverses its lo-
cal neighborhood completely before stepping outside of the local
neighborhood. Therefore, when data are distributed following the
space-filling curve, in a consecutive round-robin manner, visible
volume blocks will tend to be distributed evenly among the pro-
cessors. This will be regardless of the underlying opacity trans-
fer function, provided that the block partition is sufficiently fine in
scale. Each processor only renders the blocks statically assigned to
it; such static data distribution is especially desirable when render-
ing large-scale datasets, as redistributing even a small portion of a
dataset could incur very high communication overhead.

4.2 Parallel Volume Rendering with POF-Assisted
Visibility Culling

Given pre-computed POF and a static data distribution, visibility
culling can be applied to parallel volume rendering without the need
of global barriers. Our rendering algorithm consists of the two ma-
jor portions, as described in the following subsections: parallel vis-
ibility culling and parallel volume rendering.

4.2.1 Parallel Visibility Culling

Because the storage overhead for POFs is quite small when encod-
ing them as polynomials, each processor keeps a copy of the pre-
computed POF information for every block in the volume, includ-
ing the blocks that are assigned to other processors. This allows
visibility culling to be done in parallel without additional commu-
nication overheads. The relevant details are itemized below:

345

• Image Space Partition: The screen space bounding box of
the whole volume’s screen projection area is partitioned into
smaller tiles with equal size where the number of the tiles
equals the number of processors. Each processor is assigned
one tile and is responsible for identifying the visible blocks
whose screen footprints overlap with the tile. This proces-
sor is also responsible for compositing the final image of the
assigned tile.

• Visibility Culling: For a given view (θ , φ), at each proces-
sor, all volume blocks will be visited in a front-to-back order
which can be enforced by traversing the blocks along a 3D
z curve, and only the blocks whose screen footprints over-
lap with the assigned tile are tested for visibility. An opacity
buffer of size equal to the tile size will be used to store an ac-
cumulated opacity value for each pixel inside the tile. Final
visibility determination is performed for each block as dis-
cussed in Section 3.3.

4.2.2 Parallel Volume Rendering

After visibility determination, all volume blocks that are not oc-
cluded are rendered. Through collective communication, each pro-
cessor obtains the indices of the non-occluded blocks it should
render. Specifically, each processor only render the non-occluded
blocks pre-assigned to it during data distribution, to capitalize on lo-
cal data accesses. Because the volume blocks are distributed along
the space filling curve, the rendering workload should be quite well-
balanced among the various processors. During image space par-
titioning, each processor is assigned a tile. Throughout the course
of the parallel volume rendering, this assignment remains static and
each processor is responsible for compositing the final image for its
tile. When a processor finishes rendering one volume block, the re-
sulting partial image is sent to any processors whose assigned tiles
overlap with the partial image of this block. After all the blocks
have been rendered, each processor composites all the partial im-
ages received to produce the final image for the tile. Finally all
image tiles are collected from the processors by the host node to
form the final image.

5 Results

In this section, we present experimental results for POF construc-
tion, as well as the effectiveness and the efficiency of our par-
allel volume rendering algorithm utilizing POF-assisted visibil-
ity culling. All tests were run using 32 1.53 GHz AMD Athlon
1800MP processors, on a parallel cluster connected by Myrinet.
The 512×512×1728 Visible Woman dataset from the National Li-
brary of Medicine was used as our test dataset. In our experiments,
the whole volume is partitioned into 110,592 (16×16×16 = 4096
voxels) volume blocks, distributed to processors along a space
filling curve in a round robin fashion. The image resolution is
512×512 by default.

The POFs can be computed in embarrassingly parallel fashion.
It took approximately 4.78 minutes for us to compute the POF in-
formation for all blocks in the Visible Woman dataset, using 32
processors, from 1296 sample views. The POF for each block is
stored either discretely as in a raster table or in a closed form as a
3rd order polynomial. The size of the raster POF table is propor-
tional to the number of sample views used. For the Visible Woman
dataset, with 1296 sample views (in a 36×36 grid defined in spheri-
cal coordinates), the total storage requires about 55 Mbytes, using a
single basis opacity transfer function; and about 500 Mbytes, using
three basis opacity transfer functions. As a form of compression, a
polynomial function is used to represent each POF. In the 2D space

Figure 4: The visibility culling effect of our parallel volume render-
ing algorithm at 18 test views, while rotating the viewpoint around
Y axis.

of spherical coordinates, θ and φ , utilizing a third order polyno-
mial, we can encode a POF table using ten coefficients, amount-
ing to only 40 bytes. Using the polynomial encoding, only about
5 Mbytes is needed to store the POF information for the Visible
Woman dataset, using a single basis function, and about 50 Mbytes
when three basis functions are used. However, compression with
polynomials may cause the POF encoding to be more conservative.
Using the opacity transfer function shown in Figure 7, 10,862 out
of 46,037 non-empty volume blocks are determined to be visible
when using the discrete POF table, while 12,356 are found to be
visible with the polynomial POF representation. Since both forms
of POF encoding cull about 73% of non-empty volume blocks, we
believe that the third order polynomial representation is a practical
option to improve storage efficiency.

With pre-computed POF information, our algorithm can cull
away the invisible portion of the dataset effectively. Using POF,
our algorithm doesn’t need to re-compute opacity information each
time the view changes. Figure 4 shows the variation of the number
of rendered blocks as we rotate the viewpoint around the Y axis, to
demonstrate that that POF-assisted visibility culling is quite stable
for all views. Figure 5 compares the total time used by the algo-
rithm without coarse-grained visibility culling with our algorithm
for a test view. In both algorithms, early ray termination is still
used when a volume block is rendered. This shows that a signif-
icant performance improvement was gained when coarse-grained
visibility culling was utilized.

To verify that POF calculation is not overly conservative, we im-
plemented a sequential visibility culling algorithm, without using
POF, for a comparison. The focus of this experiment was to com-
pare the effectiveness of the visibility culling irrespective of perfor-
mance. In the sequential algorithm, the volume blocks are sequen-
tially visited in a front-to-back order. Each time a block is visited,
it is tested for visibility by comparing the screen projection area
of the block and the composited rendering result of previously ren-
dered blocks. If it is not occluded by previously rendered volume
blocks, then it will be rendered. Otherwise, it will be skipped. This
sequential algorithm found 10,033 volume blocks that are not oc-
cluded and culled about 78% non-empty volume blocks, which is
very close to the result of our algorithm using POF table(76%).

Static data distribution along a space filling curve gives our par-
allel volume rendering algorithm a well-balanced workload. In our
tests, both a Hilbert curve and a Z curve have been tested, pro-
ducing very similar results. In Figure 5, the small variation of the
rendering time used by each of the 32 processors shows that, even
with visibility culling, our algorithm can still achieve good load
balance. This implies good scalability for our parallel volume ren-
dering algorithm. Figure 6 gives the speedup factors obtained using
different number of processors. Our algorithm achieves approxi-

346

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Processor ID

Re
nd

eri
ng

 tim
e (

se
co

nd
s)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Processor ID

Re
nd

eri
ng

 tim
e (

se
co

nd
s)

(b)

Figure 5: Two graphs showing the rendering time, including the
time spent on visibility determination, ray casting and image com-
position, on each of 32 processors: (a) using the algorithm without
visibility culling, and (b) using the algorithm with visibility culling.
They are shown separately due to the large difference in the render-
ing time.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Processor Number

Sp
ee

du
p

Figure 6: The speedup of our algorithm when using 1, 2, 4, 8, 16
and 32 processors.

mately 2 frames per second when using 32 processors. About 89%
and 81% parallel utilization are observed for 16 and 32 processors,
respectively. These results show a large improvement over previous
occlusion accelerated parallel algorithms [Huang et al. 2000b; Gao
and Shen 2001].

POFs are very useful for families of opacity transfer functions
defined on multiple basis functions. Pre-computing POFs for each
new opacity transfer function is avoided. After the POFs are com-
puted for a set of basis opacity transfer functions, they are used to
perform visibility culling for any opacity transfer function gener-
ated from the same set of basis functions. Figure 7 shows two ba-
sis functions in an initial opacity transfer function and the images
produced using each basis functions. The images generated using
different scaling factors are shown in Figure 8. From these results,
it can be seen that visibility culling works well when the opacity
transfer function is adjusted on the fly.

Figure 7: Basis functions representing skin area and bone area.

Figure 8: Rendering results after changing the scaling factors of
basis functions. Left: k0=0.05, k1=1.0, 45866 visible blocks, 173
culled blocks; Middle: k0=0.25, k1=0.9, 24515 visible blocks,
21524 culled blocks; Right: k0=0.80, k1=0.5, 13458 visible blocks,
32581 culled blocks; Here k0 and k1 are factors to control the opac-
ity transfer functions for skin area and bone area, respectively. For
the best interpretations of these results, please see the color images.

6 Conclusion and Future Work

This paper introduces the concept of Plenoptic Opacity Functions
(POFs) to encode the opacity information for each volume block
in a volume rendering algorithm. Such opacity information can be
pre-computed for each block from a set of sample views. A par-
allel scalable volume rendering algorithm has been designed and
implemented to utilize such pre-computed POFs, using static data
distribution along space filling curves, to cull away occluded vol-
ume blocks. When the view changes, although the visibility deter-
mination still needs to be done, a full re-computation of the opac-
ity information is avoided. By analyzing the integral form of the
opacity calculation for a single ray, POF pre-computation has been
extended to support a family of opacity transfer functions. In this
way, our algorithm can perform visibility culling for any opacity
transfer function in a family without full POF re-computation.

It is true that discrete representation of a POF may not be as
accurate as its continuous space counterpart. However, to be con-
servative and effective in occlusion culling, we only need to use a
tight lower bound of opacity. Our framework offers this capability.
Further, like all sampling methods, as long as the underlying contin-
uous space function is relatively smooth compared to the sampling
rate, the discrete representation is accurate with proper interpola-
tion. We observe that POFs normally do have a very smooth en-

347

velope. Therefore, we believe the approach of POF is conservative
in general. Finally, we do not know of an automatic mechanism to
determine a minimal necessary sampling resolution of POF.

Our parallel rendering algorithm used for testing the efficacy of
POF performed well for orthogonal projection. As a part of our fu-
ture work, we would like to further investigate the effectiveness of
POFs for perspective views. Our algorithm works correctly for a
family of opacity transfer functions. However, more analysis might
be necessary to improve it for even better culling performances
without estimation, especially when multiple bases are used. In
addition, we plan to provide coarse-grained visibility culling for
hardware implementations of volume rendering, and further extend
coarse-grained visibility culling using POFs to view-dependent iso-
surface extraction, as well as time-varying volume visualization.
The concept of POF can also be used in hierarchical volume ren-
dering and we will explore that in the future.

We understand that several other acceleration methods exist
in large volume visualization, including compression techniques
[Guthe et al. 2002] and hardware support [Lum et al. 2002]. POF
can be complementary to these methods.

Acknowledgments

The work was supported in part by the Mathematics, Information
and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U. S. Department of Energy, under contract
No. DE-AC05-00OR22725 with UT-Battelle, LLC and in part by
NSF ACR-0118915, NASA grant NCC-1261, Ameritech Faculty
Fellowship, and Ohio State Seed Grant. Special thanks to Professor
Jack Dongarra and Clay England at University of Tennessee, Don
Stredney, Dennis Sessanna and Jason Bryan from Ohio Supercom-
puter Center, and Professor Dhabaleswar Panda at The Ohio State
University for providing the test environment. The Visible Woman
dataset is provided by the National Library of Medicine. We also
thank the anonymous reviewers for their useful comments and sug-
gestions.

References

BAJAJ, C., IHM, I., PARK, S., AND SONG, D. 2000. Compression-based
ray casting of very large volume data in distributed environments. In
HPC-Asia 2000, 720–725.

DURAND, F. 1999. 3D Visibility: analytical study and applica-
tions. PhD thesis, Université Joseph Fourier, Grenoble I. http://www-
imagis.imag.fr.

GAO, J., AND SHEN, H.-W. 2001. Parallel view-dependent isosurface
extraction using multi-pass occlusion culling. In 2001 IEEE Symposium
in Parallel and Large Data Visualization and Graphics.

GREENE, N. 1996. Hierarchical polygon tiling with coverage masks. In
ACM SIGGRAPH 96, ACM SIGGRAPH, 65–74.

GUTHE, S., WAND, M., GONSER, J., AND W., S. 2002. Interactive
rendering of large volume data sets. In IEEE Visualization’02.

HUANG, J., MUELLER, K., SHAREEF, N., AND CRAWFIS, R. 2000. Fast-
splats: Optimized splatting on rectilinear grids. In IEEE Visualization
’00, 219–227.

HUANG, J., SHAREEF, N., CRAWFIS, R., SADAYAPPAN, P., AND
MUELLER, K. 2000. A parallel splatting algorithm with occlusion
culling. In 3rd Eurographics Workshop on Parallel Graphics and Vi-
sualization, Girona, Spain, 125–132.

KINDLMANN, G., AND DURKIN, J. W. 1998. Semi-automatic generation
of transfer functions for direct volume rendering. In IEEE/ACM Sympo-
sium on Volume Visualization’98, Research Triangle Park, NC, 79–86.

KLOSOWSKI, J., AND SILVA, C. 2001. Efficient conservative visibility
culling using the prioritized-layered projection algorithm. IEEE Trans-
actions on Visualization and Computer Graphics 7, 4, 365–379.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Interactive volume
rendering using multi-dimensional transfer functions and direct manipu-
lation widgets. In IEEE Visualization’01.

LAW, A., AND YAGEL, R. 1996. Multi-frame thrashless ray casting with
advancing ray-front. In Graphics Interface ’96, 70–77.

LEVOY, M. 1988. Display of surfaces from volume data. IEEE Computer
Graphics and Applications 8, 5, 29–37.

LEVOY, M. 1990. Efficient ray tracing of volume data. ACM Transactions
on Graphics 9, 3, 245–261.

LIU, Z., FINKELSTEIN, A., AND LI, K. 2001. Progressive view-
dependent isosurface propagation. In IEEE TCVG Symposium on Vi-
sualization(VisSym’01).

LIVNAT, Y., AND HANSEN, C. 1998. View dependent isosurface extrac-
tion. In IEEE Visualization ’98, 175–180.

LUM, E., MA, K., AND CLYNE, J. 2002. A hardware-assisted scalable
solution for interactive volume rendering of time-varying data. IEEE
Transactions on Visualization and Computer Graphics 8, 3, 286–301.

MA, K.-L., AND CROCKETT, T. 1997. A scalable, cell-projection volume
rendering algorithm for 3d unstructured data. In Proc. of 1997 Sympo-
sium on Parallel Rendering, IEEE CS Press, 95–104.

MA, K.-L., PAINTER, J. S., HANSEN, C. D., AND KROGH, M. F. 1994.
Parallel volume rendering using binary-swap compositing. IEEE Com-
puter Graphics and Applications 14, 4, 59–68.

MAX, N. 1995. Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics 1, 2.

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-P.
1998. Interactive ray tracing for isosurface rendering. In IEEE Visual-
ization ’98, 233–238.

PASCUCCI, V., LANEY, D. E., FRANK, R. J., SCORZELLI, G., LINSEN,
L., HAMANN, B., AND GYGI, F. 2003. Real-time monitoring of large
scientific simulations. In ACM Symposium on Applied Computing’03,
ACM Press.

PEKAR, V., WIEMKER, R., AND HEMPEL, D. 2001. Fast detection of
meaningful isosurfaces for volume data visualization. In IEEE Visual-
ization’01, 223–230.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLAN-
NERY, B. P. 1992. Numerical recipes in c: The art of scientific comput-
ing.

WONKA, P., WIMMER, M., AND SILLION, F. 2001. Instant visibility. In
EuroGraphics, A. Chalmers and T.-M. Rhyne, Eurographics.

ZHANG, E., AND TURK, G. 2002. Visibility-guided simplification. In
IEEE Visualization’02, 267–274.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF III, K. E. 1997.
Visibility culling using hierarchical occlusion maps. In ACM SIG-
GRAPH 97, 77–88.

ZHANG, X., BAJAJ, C., AND RAMACHANDRAN, V. 2001. Parallel and
out-of-core view dependent isocontour visualization using random data
distribution. In the Tenth SIAM Conference on Parallel Processing for
Scientific Computing 2001, SIAM Activity Group on Supercomputing.

348

