
ORNL Kohl/2003-1

Components and Common Interfaces
for Remote and Distributed Visualization

Jim Kohl
Oak Ridge National Laboratory

Remote & Distributed Visualization Frameworks Workshop
Monday, April 14, 2003

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

ORNL Kohl/2003-2

(My) Background

• “I’m not a viz guy” per se… ☺
• Common Component Architecture (CCA)

⇒ “MxN” Parallel Data Redistribution
⇒ Simple Viz, Steering and Fault Tolerance…

• CUMULVS
⇒ Interactive Viz, Steering, F.T. of Scientific Sims

• PVM / XPVM
⇒ Program Visualization, GUI development…

ORNL Kohl/2003-3

Remote & Distributed Viz (RDV)
• Big Data Over Wide Area Network…

⇒ Performance, Bandwidth, Performance…
→ Data Reduction & Filtering (SDM)

⇒ Where to Break the Pipeline?!
⇒ Money Talks…

• Need a Common Viz Framework!
⇒ Collaborate, Generalize, Collaborate…
⇒ Social & Political Obstacles
⇒ Need Flexible & Efficient Infrastructure!

ORNL Kohl/2003-4

RDV Framework Criteria
• High-Performance / High-Bandwidth

⇒ Cannot Sacrifice Performance for “Glue”
• Commonality

⇒ Everyone’s Stuff Has To Fit!
• Ease of Integration, Simplicity

⇒ Minimal Wrappers & Cruft, Appls & Viz
• Generalized Interfaces!

⇒ Interoperability ~ Alternate Solutions
⇒ Code Re-Use; Share Expertise…

Kohl/2003-5

Why Components?

The task of the software development team is to engineer the
illusion of simplicity [Booch].

ORNL Kohl/2003-6

CCA Components & Frameworks
• Strict Component Boundaries

⇒ Enforces Interfaces Better than Plain OO
• High-Performance Solutions

⇒ “Direct-Connect” Short-Circuiting
→ Virtual Function Call Overhead Within Process

⇒ “MxN” Parallel Data Redistribution
→ High-Level Parallel Data Exchanges
→ Substrate for Inter-Framework Interactions

• A Good Foundation for RDV…? (Yup. ☺)

ORNL Kohl/2003-7

No “CCA Sunshine”…

• CCA is Good Component Infrastructure, But…
• It’s Not Easy to Generalize & Collaborate

⇒ Hasn’t really been fully done before for Viz…
→ No Single Authoritative Flow-Based Framework!

⇒ Requires *EXTRA* Effort
→ Not Just the Coolest, Strongest, Fastest Toys…
→ Interface Development Takes Careful Thought
→ Must Work TOGETHER (else useless…)

• Big Payoff ~ Cooperate, Not Compete…

ORNL Kohl/2003-8

Where to Start?

• Basic Viz Functions
⇒ Data Analysis (SDM), Transmission, Rendering…
⇒ Initial Interfaces Should Cover Existing Work

→ Informal “Standards” are a Good Start!

• Common Distributed Data Model
⇒ Describe Existing Data Organizations
⇒ Work Already In Progress ~ SciDAC TSTT & CCA
⇒ Viz Community Should Join the Fray…

ORNL Kohl/2003-9

Then What?

• Build Full Parallel/Distributed Viz Pipeline
⇒ Use Emerging “MxN” Technology
⇒ Generalize Functional Blocks

→ Introduce WAN as Adjustable Stage in Pipeline?

• Viz Cache Architecture ~ ORNL, UTK, OSU
⇒ Multiple Parallel Clusters, Daisy-Chained…
⇒ Not a Specific Solution Æ General Framework

Kohl/2003-10

Scalable Visualization Cache ArchitectureScalable Visualization Cache Architecture
• Increasingly Massive Scientific Data Sets

⇒Too Large to Fully Explore / Visualize Interactively
→Multi-Terabytes & Petabytes…!

• Modular, Layered Viz Cache Framework
⇒Parallel Storage, Analysis & Reduction Per Layer
⇒Independent Memory & Disk Cache Per Layer
⇒Navigate & Zoom Through Hierarchy

100s of GBs 10s of GBs
GBs 100s of MBs

R3()

Parallel
RenderingReorganized

Data For Viz Reduction & Filtering

R2() R1()
R0()

Terabyte+
Appl Data

CCA “MxN” &
CUMULVS

SDM & ASPECT
Data Reduction

Multi-resolution
Hierarchy

Zoom
Source

Display

ORNL Kohl/2003-11

CCA Mini-Tutorial

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

ORNL Kohl/2003-12

CCA Concepts: Ports

• Components interact through well-defined interfaces, or ports
⇒ In OO languages, a port is a class or interface
⇒ In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the class or
subroutines of the port

• Components may use ports – call methods or subroutines in
the port

• Links denote a caller/callee relationship, not dataflow!
⇒ e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

ORNL Kohl/2003-13

Ports, Interoperability, and Reuse
• Ports (interfaces) define how components interact
• Generality, quality, robustness of ports is up to

designer/architect
⇒ “Any old” interface is easy to create, but…
⇒Developing a robust domain “standard” interface requires thought,

effort, and cooperation
• General “plug-and-play” interoperability of components

requires multiple implementations conforming to the same
interface

• Interoperability and reuse requires “standard” interfaces
⇒Typically domain-specific
⇒ “Standard” need not imply a formal process, may mean “widely used”

ORNL Kohl/2003-14

CCA Concepts: Frameworks
• The framework provides the means to “hold” components

and compose them into applications
⇒The framework is often application’s “main” or “program”

• Frameworks allow exchange of ports among components
without exposing implementation details

• Frameworks provide simple standard services to components
⇒BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as components in
order to connect to components in other frameworks

• Currently: specific frameworks support specific computing
models (parallel, distributed, etc.).

• Future: full flexibility through integration or interoperation

Kohl/2003-15

Importance of Provides/Uses
Pattern for Ports

Component 1 Component 2
Provides/Uses

Port

• Fences between components
⇒Components must declare both

what they provide and what
they use

⇒Components cannot interact
until ports are connected

⇒No mechanism to call anything
not part of a port

• Ports preserve high
performance direct
connection semantics…

• …While also allowing
distributed computing

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

Kohl/2003-16

Framework Stays “Out of the Way”
of Component Parallelism

• Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

P0 P1 P2 P3

Components: Yellow, Red, Orange

Framework: Gray

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

MCMD/MPMD also supported

ORNL Kohl/2003-17

MxN Parallel Data Redistribution
• Share Data Among Coupled Parallel Models

⇒ Disparate Parallel Topologies (M processes vs. N)
⇒ e.g. Ocean & Atmosphere, Solver & Optimizer…
⇒ e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

ORNL Kohl/2003-18

CCA Concepts: Language
Interoperability

• Existing language
interoperability
approaches are “point-to-
point” solutions

• Babel provides a unified
approach in which all
languages are considered
peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

	Components and Common Interfaces for Remote and Distributed Visualization
	(My) Background
	Remote & Distributed Viz (RDV)
	RDV Framework Criteria
	CCA Components & Frameworks
	No “CCA Sunshine”…
	Where to Start?
	Then What?
	CCA Mini-Tutorial
	CCA Concepts: Ports
	Ports, Interoperability, and Reuse
	CCA Concepts: Frameworks
	Importance of Provides/Uses Pattern for Ports
	Framework Stays “Out of the Way” of Component Parallelism
	MxN Parallel Data Redistribution
	CCA Concepts: Language Interoperability

