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Properties of the Electron

• charge:

e = 1.602176462(63)×10−19 C |qe+ − qe−| /e < 4× 10−8

• mass:

m = 9.10938188(72)×10−31 kg |me+ −me−| /m < 8× 10−9

• electric dipole moment:

d = 1(1)×10−48 C m

• g factor:

g = 2.0023193043737(82) |ge+ − ge−| /g < 4× 10−12

by Van Dyck, 1987.
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relates ~µ = magnetic moment and ~S = spin

most precise mesurement in 1998 CODATA (Rydberg ±7.6× 10−12)



The Electron g Factor

• QED connects g factor to α:
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• Precision of Ck (calculated) and measurements:
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The Fine Structure Constant

• Compare measurements of α = µ0c e
2

2h relative to 1998 CODATA value:
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• Correction (2003) of theory shifted electron g factor result by 6 ppb.



A Single Electron in a Penning Trap

• A Penning trap consists of a strong homogeneous magnetic field and a weak

electrostatic quadrupole field.

• Three harmonic motions result from combined fields:

Transition: Frequency: hν/kb: Damping:

Magnetron νm = 11.85 kHz hνm

kb
= 0.57 µK γm

2π ≈ 10−15 Hz

Axial νz = 64.42 MHz hνz

kb
= 3.1 mK γz

2π ≈ 5 Hz

Cyclotron νc = 146.5 GHz hνc

kb
= 7.0 K γc

2π ≈ 0.02 Hz

Spin νs = 146.7 GHz hνc

kb
= 7.0 K γs

2π ≈ 10−12 Hz



Cyclotron Motion

• Circular motion in magnetic field.

• Weakly perturbed by electric field.

• νc =
1
2π

eB
mc = 146 GHz

• Damped by synchrotron radiation (in free space τc ≈ 0.1 s).

• Decay rate modified by surrounding structure.

• Frequency modified by surrounding structure (cavity shifts).

– A leading systematic in previous g factor measurement.



Axial Motion

• Simple harmonic motion parallel

to magnetic field.

• Nearly independent of magnetic field.

• νz =
1
2π

√

eV0

md2 = 64 MHz

• Damped very weakly by synchrotron radiation (τz ∼ 106 s).



Magnetron Motion

• Circular motion ( ~E × ~B drift).

• νm = 1
2π

V0c
2B = 14 kHz

• Motion is metastable:

– It is energetically favorable to increase in size.

• Essentially undamped by synchrotron radiation (τm ∼ 108 years).

• Can be “cooled” into the axial motion to stabilize.



Measuring g-2

• Electron g factor relates ~µ = magnetic moment and ~S = spin:

~µ =
g
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)
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• Measure as:
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Cylindrical Penning Trap

• Implemented trap is cylindrical and acts as high Q microwave cavity to

suppress spontaneous emission by cyclotron motion.

• Voltage on compensation electrodes tuned to make trap harmonic.

• Electrons loaded off of tungsten field emission point.
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Dilution Refrigerator

10'
1"

x10

• Base temperature 100 mK.

• Cooling power 50 µW.

• Gives n̄c = 0.

• Cools other motions?

• µ-waves injected from below.



How do we know it is one electron?

Cyclotron motion and spin:

• Radius of cyclotron motion is only ∼ 10 nm.

• Cyclotron frequency is 146 GHz

⇒ difficult to make low noise amplifiers!

• Spin is even more difficult since it is magnetic dipole transition.

Magnetron motion:

• Motion is spatially large and slow (1− 100 kHz).

• Detection would likely damp motion which is metastable

⇒ particle would fall out of trap (radially).

Axial motion:

• Frequency (20− 200 MHz) is usable.

• Amplitude can be ∼ 100 µm.

• Does not give any information about cyclotron or spin state!



Detecting the Axial Motion

• All monitoring is done through axial motion, which is damped and detected

with a cryogenic amplifier:

• Axial motion driven to get larger response:
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Measuring the Cyclotron and Spin State

• We seek to couple spin and cyclotron state to axial motion.

• Small quadratic variation in magnetic field introduced with a nickel ring

(magnetic “bottle”):

nickel
rings	 

0.5 cm

B Field

• Classically, there is a change in the “spring constant” of axial oscillator,

detected as a change in oscillation frequency δc = 12 Hz.



Quantum Jump Spectroscopy

• Continuously track axial frequency to monitor cyclotron and spin state.

• Detection of quantum jumps of cyclotron state:
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• Long excited state lifetime gives enough time for detection.

• Dilution refrigerator cools cyclotron motion back to ground state.

• Map out cyclotron and anomaly response with “quantum jump spectroscopy”.

• Use only lowest cyclotron states ⇒ no relativistic shift.



Consequences of Coupling

• Quantum mechanically, the coupling interaction is:

H ′ = h̄δ
(

nc +
1
2

) (

nz +
1
2

)

• This is a quantum non-demolition (QND) measurement.

• Theoretical lineshapes at different γz/δ and n̄z:
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• Use exponential tail to measure axial temperature.



Large Linewidth Problem

• Axial temperature measured to be 16 K with 100 mK environment

⇒ 320 ppb cyclotron linewidth.

• We would like to measure νc and νa to 0.1 ppb.

How can we decrease the linewidths?

• Reduce axial temperature.

– Improve amplifier heat sinking.

– Electronic feedback to cool

axial motion.

• Reduce bottle coupling.

– Must detect smaller

axial frequency shifts.

• Increase axial frequency νz.

– Quantum jump size ∼ 1/νz.

– Linewidths ∼ 1/ν2
z .

– Need new higher frequency amplifiers.
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Feedback Cooling

• Axial temperature of electron is modified by feeding back detected signal.

• Feedback gives effective temperature Te and effective axial damping γz.

• Noiseless limit:

Te = Tz (1−G)

• Extra noise limits cooling:

Te = Tz

(

1−G +
G2

1−G

V 2
G

V 2
t

)

where VG is extra noise in feedback

in addition to thermal noise Vt.

• Phase of drive is adjusted with variable length of cable.

• Drive added to cancel direct coupling of feedback to amplifier.



Feedback Modified Temperature

• Width of cyclotron spectrum is used to determine axial temperature:

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

ys

G = 0.00
Tz = 5.17 ± 0.50 K

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

ys

G = 0.56
Tz = 2.16 ± 0.21 K

ex
ci

ta
tio

n 
fra

ct
io

n

0 10 20 30 40 50 600.
00

0.
20

ys

G = 0.89
Tz = 0.85 ± 0.13 K

frequency − νc (kHz)



Feedback Cooling Results
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B. D’Urso, B. Odom, and G. Gabrielse, Phys. Rev. Lett. 90 043001 (2003)

• Axial temperatures:

– Initial 5 K.

– Ambient 1.6 K.

– Lowest 850± 130 mK.

• No dilution refrigerator needed.

• Extra noise prevents

indefinite cooling.



Tracking the Axial Frequency

• Difficulties of axial detection:

– Only have ∼ 1 s to determine frequency, need ∼ 1 s to see axial response.

– Axial motion is significantly anharmonic (but adjustable).

• Multiple stationary drives:

– Good for detecting large known frequency jumps.

– Anharmonicity causes nonlinearities if drives are too close together.

• Phase-locked loop:

– Slow, especially for large jumps.

– Can lose lock if too aggressive.

• Self-excitation:

– Stabilizes anharmonic response at any amplitude.

– Can it be controlled?



Self-Excitation

• Start with same setup as

feedback cooling.

• Axial equation of motion:

z̈ + γzż + ω2
zz = Fd(t)/m

• Positive feedback force:

Fd(t) = Gmγzż(t)

• Result is exponentially growing or decaying oscillation:

z(t) = A0e
(G−1)teiωzt = A(t)eiωzt

• Must tune G = 1 exactly for stable self-excitation.

• Need an automatic gain control system:

G→ G(A), where G(A) = 1 at stable amplitude.



DSP Limited Self-Excitation

• Analyze signal and adjust gain to stabilize self-excitation amplitude.

• Processing must be real time, computer control (LabView) is too slow!

• Use dedicated TMS320F2812 digital signal processor (DSP).
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Self-Excitation Stability

• Excellent frequency

stability:

• Allows decrease in

bottle size.

• Large jumps

(up to nc = 10) detected.
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Improved Linewidths

• Reduced axial temperature:

16 K→ 0.6 K.

• Increased axial frequency νz
from 64 MHz to 200 MHz.

• Cyclotron linewidth reduced to ∼ 2 ppb. 0.0 0.5 1.0
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• We would like to measure νc and νa to 0.1 ppb.

• Further improvements ahead:

– Continue to reduce axial temperature.

– Reduce bottle coupling.



Magnetic Field Stability

Potential sources of drift:

• Ambient magnetic field fluctuations:

– Shielded by magnet by factor of ∼ 150.

• Cryogen behavior:

– Cryogen reservoir pressures regulated.

• Dilution refrigerator base temperature:

– Dependence was ∼ 5 ppb/mK at 100 mK due to nuclear spins.

– Replace copper with silver, titanium, molybdenum

⇒ < 0.03 ppb/mK

• Room temperature:

– Dependence is > 1 ppb/K.

– Regulate air temperature around experiment.



Conclusions

• Experiment changes decreased cyclotron and anomaly linewidths by

∼ 200 since 1998. (expect another factor of 10)

• Elegant demonstration of feedback cooling.

• DSP limited self-excitation is a robust and time efficient means of monitoring

axial frequency.

• Advantages over 1987 measurement:

– Cyclotron and anomaly linewidths expected ∼ 50 times narrower.

– Anomaly transition easier to drive with lower axial temperature and higher

axial frequency.

– Quantum jump spectroscopy ⇒ no relativistic shift.

– Cyclotron cavity shifts easily understood.

• Ultimate accuracy expected: ∆g/g ∼ 1× 10−13.


