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The Fundamental Problem

• Reliance on high-end computing in science 
and engineering has skyrocketed

• Simulation software growing rapidly in size 
and complexity

• Hardware also growing rapidly in size and 
complexity

• Yet, we still rely on programming models 
and even tools developed early in parallel 
computing!
– Makes HEC increasingly challenging for software 

developers
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The Fundamental Solution

• Raise the level of abstraction offered to 
the HEC programmer

• Programming models/environments that 
better support the diversity of HEC 
architectures and implementations

• Portable performance
• Tools/approaches to manage software 

development complexity
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Recognize the Constraints

• Scientific simulation software is written by domain 
scientists, not computer scientists

• Much simulation software evolves over years or 
decades

• Codes won’t be rewritten from scratch to 
accommodate new CS ideas

• Solutions must work with existing code, languages

• Incremental approaches useful

• Portability of software, tools, performance is 
mandatory
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Vision: Programming models

• Message passing abstraction is hard, shared-
memory easier
– Migration path/tools important

• Automate implementation from high(er)-level 
expression of parallel algorithm
– Let “system” decide among message-passing, threads, 

mixture

• Support mixture of fine- and coarse-grain parallelism
– Intelligent scheduling of independent parallel tasks to extract 

more parallelism

• Fault tolerance and recovery important to both Grid 
and HEC
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Vision: Managing Complexity

• High-level domain-specific languages
– Domain-specific abstractions
– Perform analysis impossible for traditional compilers

• Component models
– Build from smaller, more managable units

• Ability to “reason” about and adapt to computational 
context
– Self-optimization

• Validation and verification of generated code, 
computed results
– Formal specification languages
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Domain-Specific Languages and 
Automatic Code Generation Tools

• DSLs can be translated into traditional programming 
languages

• High-level view allows better decision-making by 
translator

• Many possibilities for optimization during code 
generation

• Optimizations may be tailored to target hardware
• Need general infrastructure, tools to create them 

quickly
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Source-To-Source 
Transformation Tools

• Similar to domain-specific languages
• Provide a means for working with existing 

software
• Need to be able to manipulate abstract 

syntax tree – simple text tools insufficient

Related need:
• High-quality freely available compiler tools
• Specifically Fortran 90/95/2000
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Programming Models

• Non-uniform access shared-memory is a good 
general target abstraction

• Shared-memory approach focuses on data rather 
than links between processes
– More natural incorporation of fault tolerance

• Use workflow/scheduling to allow more flexible 
expression of parallelism
– Extract more parallelism from existing methods

• Must support mixed-language programming

• Implement as libraries? Compilers?
– Source-to-source tools can help blur distinction
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Component Models

• Tool for managing software complexity

• Environment in which to build domain-specific 
computational frameworks

• Promote reusable, interoperable software

• Need tools for…
– automatic composition, 
– facilitate selection of components,
– performance tuning
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Specification Languages and 
Verification Technologies

• Need implied by technologies discussed:
– Automatic code generation or transformation
– Programming models which translate general 

specification into specific implementation
– Automatic selection, assembly, and tuning of 

components
• Give software developers tools to express at 

higher levels what their programs should be 
doing


