
Workshop on the Road Map for the Revitalization of High End Computing 1Workshop on the Road Map for the Revitalization of High End Computing16-18 June 2003 116-18 June 2003

Simplifying Software Development 
and Increasing Software 

Productivity on High End Computers
(P013)

David E. Bernholdt, Wael R. Elwasif, 
Al Geist, James A. Kohl, Stephen L. Scott, 

Torsten Wilde

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725.



Workshop on the Road Map for the Revitalization of High End Computing 216-18 June 2003

The Fundamental Problem

• Reliance on high-end computing in science 
and engineering has skyrocketed

• Simulation software growing rapidly in size 
and complexity

• Hardware also growing rapidly in size and 
complexity

• Yet, we still rely on programming models 
and even tools developed early in parallel 
computing!
– Makes HEC increasingly challenging for software 

developers



Workshop on the Road Map for the Revitalization of High End Computing 316-18 June 2003

The Fundamental Solution

• Raise the level of abstraction offered to 
the HEC programmer

• Programming models/environments that 
better support the diversity of HEC 
architectures and implementations

• Portable performance
• Tools/approaches to manage software 

development complexity



Workshop on the Road Map for the Revitalization of High End Computing 416-18 June 2003

Recognize the Constraints

• Scientific simulation software is written by domain 
scientists, not computer scientists

• Much simulation software evolves over years or 
decades

• Codes won’t be rewritten from scratch to 
accommodate new CS ideas

• Solutions must work with existing code, languages

• Incremental approaches useful

• Portability of software, tools, performance is 
mandatory



Workshop on the Road Map for the Revitalization of High End Computing 516-18 June 2003

Vision: Programming models

• Message passing abstraction is hard, shared-
memory easier
– Migration path/tools important

• Automate implementation from high(er)-level 
expression of parallel algorithm
– Let “system” decide among message-passing, threads, 

mixture

• Support mixture of fine- and coarse-grain parallelism
– Intelligent scheduling of independent parallel tasks to extract 

more parallelism

• Fault tolerance and recovery important to both Grid 
and HEC



Workshop on the Road Map for the Revitalization of High End Computing 616-18 June 2003

Vision: Managing Complexity

• High-level domain-specific languages
– Domain-specific abstractions
– Perform analysis impossible for traditional compilers

• Component models
– Build from smaller, more managable units

• Ability to “reason” about and adapt to computational 
context
– Self-optimization

• Validation and verification of generated code, 
computed results
– Formal specification languages



Workshop on the Road Map for the Revitalization of High End Computing 716-18 June 2003

Domain-Specific Languages and 
Automatic Code Generation Tools

• DSLs can be translated into traditional programming 
languages

• High-level view allows better decision-making by 
translator

• Many possibilities for optimization during code 
generation

• Optimizations may be tailored to target hardware
• Need general infrastructure, tools to create them 

quickly



Workshop on the Road Map for the Revitalization of High End Computing 816-18 June 2003

Source-To-Source 
Transformation Tools

• Similar to domain-specific languages
• Provide a means for working with existing 

software
• Need to be able to manipulate abstract 

syntax tree – simple text tools insufficient

Related need:
• High-quality freely available compiler tools
• Specifically Fortran 90/95/2000



Workshop on the Road Map for the Revitalization of High End Computing 916-18 June 2003

Programming Models

• Non-uniform access shared-memory is a good 
general target abstraction

• Shared-memory approach focuses on data rather 
than links between processes
– More natural incorporation of fault tolerance

• Use workflow/scheduling to allow more flexible 
expression of parallelism
– Extract more parallelism from existing methods

• Must support mixed-language programming

• Implement as libraries? Compilers?
– Source-to-source tools can help blur distinction



Workshop on the Road Map for the Revitalization of High End Computing 1016-18 June 2003

Component Models

• Tool for managing software complexity

• Environment in which to build domain-specific 
computational frameworks

• Promote reusable, interoperable software

• Need tools for…
– automatic composition, 
– facilitate selection of components,
– performance tuning



Workshop on the Road Map for the Revitalization of High End Computing 1116-18 June 2003

Specification Languages and 
Verification Technologies

• Need implied by technologies discussed:
– Automatic code generation or transformation
– Programming models which translate general 

specification into specific implementation
– Automatic selection, assembly, and tuning of 

components
• Give software developers tools to express at 

higher levels what their programs should be 
doing


