
Source-tracking Unification∗

Venkatesh Choppella
mailto:choppellav@ornl.gov

Oak Ridge National Laboratory, USA

Christopher T. Haynes
mailto:chaynes@cs.indiana.edu

Indiana University, USA

Aug 2nd, 2003

∗CADE-19: Conference on Automated Deduction Jul 28th-Aug 2nd, 2003, Miami, USA. Research
supported by the National Science Foundation, grant NSF-CDA-9312614 and the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC
for the U. S. Department of Energy under contract number DE-AC05-00OR22725.

mailto:choppellav@ornl.gov
mailto:chaynes@cs.indiana.edu

Source-tracking Unification

What is it and why is it useful?

Track the results of unification or its failure in terms of the source, i.e.,
the original presentation of problem

Automatic explanation and debugging

• Type Error slicing in Functional Programs

• Debugging Logic Programs

1

Introduction

Example: Type Error Slicing

Framework

Example Wrap up: Program Slicing

Related Research

Future Work and Conclusions

2

Different views of Solving Unification

Transforming Equations to solved form

Closure computation on Unification Graphs

Context Free Language Reachability

• Maximally Unifiable subsets [Cox, 1984]

• Systems of Logic [Le Chenadec, 1989]

3

Main Ideas

Unification Graphs are Labeled Directed Graphs

• Equational Edges are labeled epsilon

• Projection Edges labeled by projection symbols {fi|f ∈ Σ,1 ≤ i ≤ arity(f)}

Downward closure is like matching parentheses (semi-Dyck
languages)

Membership in unification closure can be witnessed by semi-Dyck
labeled paths (unification paths)

Explanations can be formulated as proofs in a type system

Proofs can be encoded as unification paths

Computation and simplification of these proofs is easy

4

Summary of Results

Model for characterizing unification source-tracking as reachability via
semi-Dyck labeled paths

Type System for unification

Algorithm for computing shortest proofs in O(V 3) time for fixed
signature

Integration of proof generation with the unification algorithm

Simplification of proofs by elementary rewriting

5

Introduction

Example: Type Error Slicing

Framework

Example Wrap up: Program Slicing

Related Research

Future Work and Conclusions

6

Unfriendly Type Error messages

Standard ML of New Jersey, Version 110.0.7, September 28, 2000

1 λ x.
2 if x then
3 inc x // inc: num → num

4 else x;

Error: case object and rules don’t agree [tycon mismatch]

rule domain:bool, object:num in expression:

case x of

true => inc x

| false => x

Too much information!

7

Type Inference and Unification

λ0 x1. if2 x3 then @4(inc5 x6) else x7

Syntax Equations −→ sets of Type Equations

n0 = λ(n1, n2) 7→ {n0
?
= n1→n2}

n2 = if(n3, n4, n7) 7→ {n3
?
= bool, n2

?
= n4,

n4
?
= n7}

n3 = λvar(n1) 7→ {n3
?
= n1}

n4 = @(n5, n6) 7→ {n5
?
= n6→n4}

n5 = const(num→num) 7→ {n5
?
= num→num}

n6 = λvar(n1) 7→ {n6
?
= n1}

n7 = λvar(n1) 7→ {n7
?
= n1}

8

9

Computing Unification Closure

10

Computing Unification Closure

n_4

n_1

n_2

n_5

n_6

n_7
n_3

n_0

 bool

 −−> −−> −−>

 num

 num

w_6

w_1 w_2 w_3

w_4

w_5

10

Computing Unification Closure

n_4n_4

 −−>

 num

 num

 bool

n_1

n_2

n_5

n_6

n_7
n_3

n_0

n_1

n_2

n_5

n_6

n_7
n_3

n_0

 −−> −−> −−> −−>

 num

 num

 bool

 −−>

w_3w_1

w_4

w_5

w_6

w_2

10

Computing Unification Closure

n_5n_0

n_1 n_2 n_6 n_7n_3 n_4

 −−>

 bool

 −−> −−>

 num

 num

w_5

w_4

w_2w_1 w_3

w_6

10

Computing Unification Closure

n_5n_0

n_1 n_2 n_6 n_7n_3 n_4

 −−> −−> −−>

 num

 num

 bool

w_1 w_2 w_3

w_4

w_5

w_6

10

Computing Unification Closure

n_0 n_5

n_1 n_2 n_6 n_7n_3 n_4

 −−> −−>

 num

 num
 bool

w_1 w_2 w_3

w_6

10

Computing Unification Closure

n_0

n_1 n_2 n_6 n_7n_3 n_4

n_5

 −−>

 bool

 num

 num

 −−>

w_1

w_6

w_4

w_5

w_2 w_3

clash 1

10

Computing Unification Closure

n_1 n_2

n_0 n_5

n_6 n_7n_3 n_4

 −−>

 bool

 −−>

 num

 num

w_2w_1

w_6

w_4

w_5

w_3

clash 2

10

Computing Unification Closure

n_1 n_2

n_0 n_5

n_6 n_7n_3 n_4

 −−> −−>

 bool
 num

w_2w_1

w_6

w_3

w_4 w_5

quotient graph

10

The Problem of Source-tracking Unification

G unifiable iff the quotient of G is clash and cycle free.

[Paterson and Wegman, 1978]

How to express connectivity of the quotient of G ...

in terms of the connectivity of G

11

Clash 1

12

Clash 1

n_4

n_1

n_2

n_5

n_6

n_7
n_3

n_0

 −−>

 num

 num

 −−>

 bool

 −−>
a

w_5

w_4

w_2w_1 w_3

b

c

de

f

g

h

i

m
n

p

q

r

s

w_6

12

Clash 1

n_4

n_1

n_2

n_5

n_6

n_7
n_3

n_0

 −−>

 bool

 −−> −−>

 num

 num

a

w_5

w_4

w_2w_1 w_3

b

c

de

f

g

h

i

m
n

p

q

r

s

w_6

12

Clash 1

n_1

n_5

n_6

n_3

 bool

 −−> −−>

 num

w_4

w_2 w_3

c

e

f h

i

p r

w_6

label(r−1h−1fpie−1c) = →−1
1 →1

12

Introduction

Example: Type Error Slicing

Framework

Example Wrap up: Program Slicing

Related Research

Future Work and Conclusions

13

Semi-Dyck Sets and Unification Paths

Σ: right parenthesis symbols

Σ−1: left parenthesis symbols

Words over Σ ∪Σ−1

One-way cancellation

{δ−1δ −→ ε | δ ∈ Σ}

Unification Paths over G:

Paths in G ∪ G−1 whose labels normalize to words over Σ

14

Unification Source-tracking Theorem

Soundness

Unification path over G with label l implies
path in the quotient of G with label equal to the normal form of l

Completeness

Path in the quotient of G with label l implies
unification path over G with label whose normal form is l

Connectivity in the quotient of G expressed ...

... in terms of connectivity in G ∪ G−1

15

Computing Shortest Unification Paths

Computation of shortest unification path using CFL shortest path
algorithm [Barrett et al. ’00]

Can be computed in O(V 3) for fixed alphabet.

16

P U(G): A Simple Type System for Unification

G = 〈Σ, V, D〉 labeled directed graph

p ∈ T (ΣGr, D): a free group term generated by the edges D

u, v ∈ V : vertices of G, l ∈ Σ∗: Word over Σ

Type judgements G ` p : u
l−→ v

17

INIT
G ` c : u

δ−→ v
c : u

δ−→ v ∈ G

REF
G ` ε : u

ε−→ u
u ∈ G

SYM G ` p : v
ε−→ u

G ` p−1 : u
ε−→ v

TRANS G ` p : u
l−→ v′ G ` q : v′

l′−→ v

G ` pq : u
ll′−→ v

DN G ` p : w
ε−→ w′

G ` c−1pc′ : u
ε−→ v

c : w
δ−→ u ∈ G

c′ : w′ δ−→ v ∈ G

Figure 1: The logic P U(G) of unification path expressions over G

18

P U(G) adequacy theorem

Let G = 〈Σ, V, D〉 be a labeled directed graph.

1. (Soundness) If G `PU p : u
l−→ v, then G/∼|= u

l−→ v.

2. (Completeness) If G/∼ |= u
l−→ v, then G `PU p : u

l−→ v where p is
some ΣGr-term over D.

19

Constructing Unification Proofs

1 procedure unify(v1, v2, m) =

2 let 〈r1, p1 〉 = find(v1) and 〈r2, p2 〉 = find(v2)

3 in if r1 = r2 then return
4 else case r1.type, r2.type

5 strict, strict: union(r1, r2, (p1)−1mp2)

6 functor, strict: unify(v2, v1, (m)−1)

7 strict, functor: let ans = occurs?(r2, r1)
8 in case ans

9 no: union(r1, r2, (p1)−1mp2)

10 yes(, q): fail(CYCLE, (p1)−1mp2q)

Unification algorithm with source-tracking: procedure unify

20

Simplification of Unification Proofs

Free group rewriting rules [Peterson and Stickel, ’81]

Weak Subject Reduction

One-Step rewriting breaks types!

... but types reappear at normalization

21

Unification Source-tracking: Summary

Definition using unification paths

Optimization using shortest-path algorithms

Deduction using the Logic for unification path expressions

Construction using standard unification algorithms

Simplification using group rewriting

22

Introduction

Example: Type Error Slicing

Framework

Example Wrap up: Program Slicing

Related Research

Future Work and Conclusions

23

Type Equation Slice for clash 1

n_1

n_5

n_6

n_3

 bool

 −−> −−>

 num

w_4

w_2 w_3

c

e

f h

i

p r

w_6

bool
?
= n3

n3
?
= n1

n1
?
= n6

n5
?
= n6→2

n5
?
= num→2

24

Program Slice for clash 1

2 = if(n3, 2, 2) 7→ bool
?
= n3

n3 = λvar(n1) 7→ n3
?
= n1

n6 = λvar(n1) 7→ n1
?
= n6

2 = @(n5, n6) 7→ n5
?
= n6→2

n5 = const(num→2) 7→ n5
?
= num→2

25

Graph of Program Slice S1

26

Graph of Program Slice S1

n_0

n_2

n_1

n_3 n_4

n_6n_5

n_7

lambda

 var @

 var

 var

 if

const
num−>num

26

Graph of Program Slice S1

n_1

n_3

n_6n_5

 var @

 var

 if

const
num−>_

26

Introduction

Example: Type Error Slicing

Framework

Example Wrap up: Program Slicing

Related Research

Future Work and Conclusions

27

Related Research

Reason lists [Wand ’86]

Not enough reasons accumulated to simulate error
Can’t eliminating irrelevant reasons: lacks cancellative rules

Flow techniques [Johnson-Walz’86]

Error-tolerant unification
Complicated algorithm, informally stated

Explanation-based systems [Stansifer ’94, Duggan ’94]

Interactive graph navigation
Lack automation

Logic Programming

Maximally unifiable subsets [Cox,’84, Chen et al.’86]
Unification failure [Cox, ’87, Port, ’88]

Origin Tracking in Rewrite Systems [Bertot, ’95, van Deursen et al.
’93]

28

Future Work

Measurements

• Evaluate efficiency and output sizes of algorithms for realistic unification
problems.

• How bad is the non-optimal algorithm in practice.

• How effective is simplification

• How to generate minimal proofs

Applications

• Diagnosis of errors in Hindley-Milner type inference

• Prolog debugging and backtracking

Extensions

• Semi-Unification (useful for Polymorphic Type Inference with Recursion)

• does this framework extend easily to other unification theories?

29

Conclusions

Relate unification with Path Problems

Simple Logic to compute well-formed “explanations”

Algorithms for computing and simplifying source-tracking information

Interactive generation of unification source-tracking information
prototype implemented in Chez Scheme

http : //www.cs.indiana.edu/hyplan/chaynes/unif.tar.gz

30

Introduction

Example: Type Error Slicing

Framework

Example Wrap up: Program Slicing

Related Research

Future Work

Conclusions

Overflow

• Rewrite Rules for Path Simplification

• Subject Reduction Properties

31

Unification Closure ∼G

EQ
u ∼ v

u
ε−→ v ∈ G

REF
u ∼ u

u ∈ G

SYM v ∼ u

u ∼ v

TRANS u ∼ v′ v′ ∼ v

u ∼ v

DN w ∼ w′

u ∼ v
w

f.i−→ u
w′ f.i−→ v

32

Path Simplification

Associativity (pq)r = p(qr) = pqr
1 (pq)−1 −→ q−1p−1

2 (p−1)−1 −→ p
3 ε−1 −→ ε
4 pε −→ p
5 εp −→ p
6 pp−1 −→ ε
7 p−1p −→ ε

Figure 3: Equational rewrite system R/A for free groups, where A
consists of the equational rule of aassociativity, and R consists of the
remaining rules (Peterson and Stickel, 1981).

R/A is strongly normalizing. Reduction under R/A yields unique
normal forms.

33

Subject Reduction Properties

Rewriting with R/A destroys P U proofs ... temporarily.

Let

a : w
ε−→ w′

b1 : w
f.i−→ u

b2 : w′ f.i−→ v

((b1)−1ab2)−1 −→R (b2)−1((b1)−1a)−1 6∈ P U

∗−→R (b2)−1a−1b1 ∈ P U

Theorem 1. (P U Weak Subject Reduction)

Let G be a unification graph and let G `PU p : u
l−→ v. If p′ is the normal

form of p under R/A rewriting, then, G `PU p′ : u
l−→ v.

34

Abstract Syntax Graph

35

n_0

n_2

n_1

n_3 n_4

n_6n_5

n_7

const

lambda

 var @

 var

 var

 if

num−>num

λ0 x1. if2 x3 then @4(inc5 x6) else x7

36

Graph of Program Slice for clash 1

37

Graph of Program Slice for clash 1

n_0

n_2

n_1

n_3 n_4

n_6n_5

n_7

lambda

 var @

 var

 var

 if

const
num−>num

37

Graph of Program Slice for clash 1

n_1

n_3

n_6n_5

 var @

 var

 if

const
num−>_

37

Type Equation Slice for clash 2

38

n_4

n_1

n_5

n_7
n_3

 bool

 −−> −−>

 num

w_5

w_2 w_3

c

de

f

g

h

q

s

w_6

bool
?
= n3

n3
?
= n1

n1
?
= n7

n7
?
= n4

n5
?
= 2→n4

n5
?
= 2→num

39

Program Slice S2

2 = if(n3, 2, 2) 7→ bool
?
= n3

n3 = λvar(n1) 7→ n3
?
= n1

n7 = λvar(n1) 7→ n7
?
= n1

2 = if(2, n4, n7) 7→ n4
?
= n7

n4 = @(n5, 2) 7→ n5
?
= 2→n4

n5 = const(2→num) 7→ n5
?
= 2→num

40

Graph of Program Slice S2

41

Graph of Program Slice S2

n_0

n_2

n_1

n_3 n_4

n_6n_5

n_7

lambda

 var @

 var

 var

 if

const
num−>num

41

Graph of Program Slice S2

n_1

n_3 n_4

n_5

n_7

 var @

 var

 if

const
 _−>num

41

Related Research

Reason lists [Wand ’86]

Accumulate reason lists during unification
Lacks soundness: not enough reasons accumulated to simulate error
No way of eliminating unwanted reasons: lacks cancellative rules

Flow techniques [Johnson-Walz’86]

Error-tolerant unification
Complicated algorithm, informally stated

Explanation-based systems [Stansifer ’94, Duggan ’94, Soosaipillai ’90]

Interactive graph navigation
Lack automation

Others Approaches:

Automata-based approach [Gandhe et al. ’96]
TCC explanation in PVS [SRI, ’98]

42

Logic Programming

Unification failure [Cox, ’87, Port, ’88]
Maximally unifiable subsets [Cox,’84, Chen et al.’86]
Tracing [Ducassé, ’99]
Visual Debuggers [Deransart, ’2000]

Rewrite Systems

Origin tracking [Bertot, ’95, van Deursen et al. 93]

Artificial Intelligence

conflict sets [Reiter ’87, de Kleer ’92]
Explanation-based diagnosis [Genesereth ’84, Wick and Thompson
’92]

43

Clash 2

n_4

n_1

n_5

n_7
n_3

 bool

 −−> −−>

 num

w_5

w_2 w_3

c

de

f

g

h

q

s

w_6

label(s−1h−1fqdge−1c) = →−1
2 →2

44

Unification Logic LE0 of Le Chenadec

s M = N

N = M

t M = x x = N

M = N

si
f(M1, M2) = f(N1, N2)

Mi = Ni

i ∈ {1,2}

su x = M y = C[x]

y = C[M]

LE0 is sound and complete with respect to path connectivity in the
quotient graph [Proposition 2.10, Le Chenadec ’89]

P U and LE0 are equivalent because they are sound and complete with
respect to the same model.

P U works on vertices of a labeled directed graph, making apparent the
integration with unification algorithms.

Geometric interpretation of proofs due to Le Chenadec. But connection

45

with semi-Dyck sets provides opportunity to apply algorithms for formal
language path problems to unification source tracking.

46

