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Abstract

In this paper, a continuous estimator strateqy is utilized
to asymptotically identify the six degree-of-freedom ve-
locity of a moving object using a single fized camera.
The design of the estimator is facilitated by the fusion
of homography-based techniques with Lyapunov design
methods. Similar to the stereo wision paradigm, the
proposed estimator utilizes different views of the object
from a single camera to calculate 3D information from
2D images. In contrast to some of the previous work in
this area, no explicit model is used to describe the move-
ment of the object; rather, the estimator is constructed
based on bounds on the object’s velocity, acceleration,
and jerk.

1 Introduction

Often in an engineering application, one is tempted to use
a camera to determine the velocity of a moving object.
However, as stated in [8], the use of a camera requires
one to interpret the motion of a 3-dimensional (3D) object
through 2D images provided by the camera. That is, the
primary problem is 3D information is compressed or nonlin-
early transformed into 2D information; hence, techniques or
methods must be developed to obtain 3D information de-
spite the fact that only 2D information is available. To
address the identification of the object’s velocity (i.e., the
motion parameters), many researchers have developed var-
ious approaches. For example, if a model for the object’s
motion is known, an observer can be used to estimate the
object’s velocity [10]. In [20], a window position predic-
tor for object tracking was utilized. In [12], an observer
for estimating the object velocity was utilized; however, a
description of the object’s kinematics must be known. In
[9], the problem of identifying the motion and shape pa-
rameters of a planar object undergoing Riccati motion was
examined in great detail. In [13], an autoregressive discrete-
time model is used to predict the location of features of a
moving object. In [1], trajectory filtering and prediction
techniques are utilized to track a moving object. Some of
the work [24] involves the use of camera-centered models
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at ORNL, a subcontract to ORNL by the Florida Department
of Citrus, and by U.S. NSF Grant DMI-9457967, ONR Grant
N00014-99-1-0589, a DOC Grant, and an ARO Automotive Cen-
ter Grant.

that compute values for the motion parameters at each new
frame to produce the motion of the object. In [2] and [21],
object-centered models are utilized to estimate the transla-
tion and the center of rotation of the object. In [25], the
motion parameters of an object are determined via a stereo
vision approach.

While it is difficult to make broad statements concerning
much of the previous work on velocity identification, it does
seem that a good amount of effort has been focused on
developing system theory-based algorithms to estimate the
object’s velocity or compensate for the object’s velocity as
part of a feedforward control scheme. For example, one
might assume that object kinematics can be described as
follows

P =Y(@)é (1)
where z(t), ©(t) denote the object’s position vector and ob-
ject’s velocity vector, respectively, Y (z) denotes a known
regression matrix, and ¢ denotes an unknown, constant vec-
tor. As illustrated in [11], the object model of (1) can
be used to describe many types of object models (e.g.,
constant-velocity, and cyclic motions). If z(t) is measure-
able, it is easy to imagine how adaptive control techniques
[22] can be utilized to formulate an adaptive update law
that could compensate for unknown effects represented by
the parameter ¢ for a typical control problem. In addition,
if z(t) is persistently exciting [22], one might be able to also
show that the unknown parameter ¢ could be identified as-
ymptotically. In a similar manner, robust control strategies
or learning control strategies could be used to compensate
for unknown object kinematics under the standard assump-
tions for these types of controllers (e.g., see [17] and [18]).

While the above control techniques provide different meth-
ods for compensating for unknown object kinematics, these
methods do not seem to provide much help with regard to
identifying the object’s velocity if not much is known about
the motion of the object. That is, from a systems theory
point of view, one must develop a method of asymptotically
identifying a time-varying signal with as little information
as possible. This problem is made even more difficult be-
cause the sensor being used to gather the information about
the object is a camera, and as mentioned before, the use of
a camera requires one to interpret the motion of a 3D object
from 2D images. To attack this double-goaded problem, we
fuse homography-based techniques with a Lyapunov synthe-
sized estimator to asymptotically identify the object’s un-
known velocity!. Similar to the stereo vision paradigm, the

IThe object’s six degree-of-freedom translational and rota-



proposed approach uses different views of the object from a
single camera to calculate 3D information from 2D images.
The homography-based techniques are based on fixed cam-
era work presented in [3] which relies on the camera-in-hand
work presented in [14]. The continuous, Lyapunov-based
estimation strategy has its roots in an example developed
in [19] and the general framework developed in [26]. The
only requirements on the object are that its velocity, accel-
eration, and jerk be bounded, and that a single geometric
length between two feature points on the object be known
a priori.

2 Geometric Model

To facilitate the subsequent object velocity identification
problem, four target points located on an object denoted
by O; Vi = 1, 2, 3, 4 are considered to be coplanar® and
not colinear. Based on this assumption, consider a fixed
plane, denoted by 7«*, that is defined by a reference image
of the object. In addition, let 7w represent the motion of
the plane containing the object feature points (see Figure
1). To develop a relationship between the planes, an iner-
tial coordinate system, denoted by Z, is defined where the
origin coincides with the center of a fixed camera. The 3D
coordinates of the target points on 7w and 7* can be respec-
tively expressed in terms of 7

mit) 2 [ @) w) u) ] 2
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under the standard assumption that the distances from the
origin of Z to the target points remains positive (i.e., z; (¢),
z; > e where £ is an arbitrarily small positive constant).
Orthogonal coordinate systems F and F* are attached to
7 and 7", respectively, where the origin of the coordinate
systems coincides with the object (see Figure 1). To relate
the coordinate systems, let R (t), R* € SO(3) denote the
rotation between F and Z, and F* and Z, respectively, and
let z¢ (t), 27 € R® denote the respective translation vectors
expressed in the coordinates of Z. As also illustrated in
Figure 1, n* € R?® denotes the constant normal to the plane
m* expressed in the coordinates of Z, s; € R? denotes the
constant coordinates of the target points located on the
object reference frame, and the constant distance d* € R
from Z to F* along the unit normal is given by

d* =n"Tm;. (4)

The subsequent development is based on the assumption
that the constant coordinates of one target point s; is
known. For simplicity and without loss of generality, we as-
sume that the coordinate s; is known (i.e., the subsequent
development requires a single geometric length between two
feature points on the object be known a priori).

From the geometry between the coordinate frames depicted
in Figure 1, the following relationships can be developed

m; = If-+ Rs; (5)
m; = xj+R'si. (6)

tional velocity is asymptotically identified.

21t should be noted that if four coplanar target points are not
available then the subsequent development can exploit the classic
eight-points algorithm [15] with no four of the eight target points
being coplanar.

After solving (6) for s; and then substituting the result-
ing expression into (5), the following relationships can be
obtained ~
mi = Ty + Rm; (7)
where R (t) € SO (3) and Z; (t) € R® are new rotational
and translational variables, respectively, defined as follows
R=R(R)" &y =ux;— Rz} (8)
From (4), it is easy to see how the relationship in (7) can
now be expressed as follows

i = (R + %n*T) my . (9)

Remark 1 The subsequent development requires that the
constant rotation matriz R* be known. This is considered
to be a mild assumption since the constant rotation matriz
R* can be obtained a priori using various methods (e.g., a
second camera, Euclidean measurements, etc.).

Fixed camera

Figure 1: Coordinate frame relationships.

3 Euclidean Reconstruction

The relationship given by (9) provides a means for formu-
lating a translation and rotation error between F and F*.
Since the Euclidean position of F and F* cannot be di-
rectly measured, a method for calculating the position and
rotational error using pixel information is developed in this
section (i.e., pixel information is the measurable quantity
as opposed to m; (t) and m;). To this end, the normalized
3D task-space coordinates of the points on 7 and 7* can be
respectively expressed in terms of Z as m; (t), m; € R?) as
follows

i T; i T
mi 2 mz:[— e 1] (10)
Zi Zi Zi
m* l'* y* T
| : 11
™ { = } )

The rotation and translation between the normalized coor-
dinates can now be related through a Euclidean homogra-
phy, denoted by H(t) € R¥*3 as follows

; (Rmh (n*)T) m 2
o H

m; =



where a; (t) € R denotes a depth ratio, and Zp (t) € R3
denotes a scaled translation vector that is defined as follows

Thp = ——. (13)

In addition to having a task-space coordinate as described
previously, each target point O;, O] will also have a pro-
jected pixel coordinate expressed in terms of Z, denoted by
u; (t),vi (t),u;,vi € R, that is respectively defined as an
element of p; (t),p; € R?, as follows
T * * * T
pi=[u v 1] pi=[u v 1] (14)
The projected pixel coordinates of the target points are re-
lated to the normalized task-space coordinates by the fol-
lowing pin-hole lens models [6]
pi = Am; pi = Am; (15)
where A € R3*3 is a known, constant, and invertible intrin-
sic camera calibration matrix. After substituting (15) into
(12), the following relationship can be developed

pi=a; (AHA™Y) p;
T/ (16)

where G (t) = [gi(t)] Vi, = 1,2,3 € R3*3 denotes a
projective homography.After normalizing G(¢) by dividing
through by the element gs3(¢), which is assumed to be
nonzero without loss of generality, the projective relation-
ship in (16) can be expressed as follows

pi = 2ig33Gnp; (17)

where G, (t) € R®*® denotes the normalized projective ho-
mography. From (17), a set of 12 linear equations given by
the 4 target point pairs (pj, p; (t)) with 3 equations per tar-
get pair can be used to determine G, (t) and a;(t)gss (t).
Based on the fact that the intrinsic calibration matrix A
is assumed to be known, (16) and (17) can be used to de-
termine the product gss (t) H (t). By utilizing various tech-
niques (e.g., see [7, 27]), the the product gs3 (t) H (t) can be
decomposed into rotational and translational components
as in (12). Specifically, the scale factor gss (t), the rota-
tion matrix R (¢), the unit normal vector n*, and the scaled
translation vector denoted by Zn (t) can all be computed
from the decomposition of the product gss (¢) H (t). Since
the product «; (t) gss (t) can be computed from (17), and
g33 (t) can be determined through the decomposition of the
product gs3 (t) H (t), the depth ratio «; (t) can be also be
computed. Based on the assumption that R* is known and
the fact that R (t) can be computed from the homography
decomposition, (8) can be used to compute R(¢). Hence,
R(t), R(t), Zn(t), n*, and the depth ratio «; (t) are all
known signals that can used in the subsequent estimator
design.

4 Object Kinematics

Based on information obtained from the Euclidean recon-
struction, the object kinematics are developed in this sec-
tion. To develop the translation kinematics for the object,

ev (t) € R? is defined to quantify the translation of F with
respect to the fixed coordinate system F* as follows

€y = Pe _p: . (18)

In (18), pe (t) € R? denotes the following extended image
coordinates [14] of an image point® on 7 in terms of the
inertial coordinate system Z

N (19)

Pe = [ ur v1 In(z1)
where In () denotes the natural logarithm, and p; € R?
denotes the following extended image coordinates of the
corresponding image point on 7* in terms of 7

pr=[ui of W) ]" . (20)

The first two elements of e,(¢) are directly measured from
the images. By exploiting standard properties of the nat-
ural logarithm, it is clear that the third element of e, (t) is
equivalent to In (a1); hence, e,(t) is a known signal since
a1(t) is computed during the Euclidean reconstruction. Af-
ter taking the time derivative of (18), the following trans-
lational kinematics can be obtained (details available upon
request)

. . o T

€y = Pe = ;AELI, [ve —R[s1], R we] (21)
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where ve(t), we(t) € R® denote the unknown linear and
angular velocity of the object expressed in Z, respectively.
In (21), A. € R¥*3 is defined as follows

0 0 uo
Ac=A—|0 0 wo (22)
0 0 O

where ug, vo € R denote the pixel coordinates of the prin-
cipal point (i.e., the image center that is defined as the
frame buffer coordinates of the intersection of the optical
axis with the image plane), and the auxiliary Jacobian-like
matrix L, (t) € R3*? is defined as

0
L, = 1 8. (23)
0

o o =

To develop the rotation kinematics for the object, e, (t) €
R? is defined using the angle axis representation [23] to
quantify the rotation of F with respect to the fixed coordi-
nate system F* as follows

ew 2 u(t)o(t) . (24)

In (24), u(t) € R® represents a unit rotation axes, and
0 (t) € R denotes the rotation angle about u(t) that is as-
sumed to be confined to the following region

—m < 0(t) <m. (25)

3 Any point O; on 7 can be utilized in the subsequent devel-
opment; however, to reduce the notational complexity, we have
elected to select the image point Op, and hence, the subscript 1
is utilized in lieu of ¢ in the subsequent development.



After taking the time derivative of (24), the following ex-
pression can be obtained [4]

éw = Lywe . (26)
In (26), the Jacobian-like matrix L., (t) € R**? is defined as

Lo=Ti-§hl, + | 1- =20 Tz e
sinc? <§>

2

where [u], denotes the 3x3 skew-symmetric form of u(t)
and o)

sin @ (¢

inc (6 (t) & ———= .

sinc (6 (t)) 10)
Remark 2 The structure of (18)-(20) is motivated by the
fact that developing the object kinematics using partial pixel
information clarifies the influence of the camera intrinsic
calibration matriz. By observing the influence of the intrin-
sic calibration parameters, future efforts might be directed
at developing an observer strategy that is robust to these pa-
rameters. Since the intrinsic calibration matriz is assumed
to be known in this paper, the observer strategy could also
be developed based solely on reconstructed Fuclidean infor-

mation (e.g., Tn(t), R(t)).

Remark 3 As stated in [25], the angle azxis representation
in (24) is not unique, in the sense that a rotation of —0 (t)
about —u(t) is equal to a rotation of 0(t) about u(t). A
particular solution for 0 (t) and u(t) can be determined as
follows [23]

6, = cos! (% (ir(R) - 1))

where the notation tr(-) denotes the trace of a matriz and
[up], denotes the 3x 3 skew-symmetric form of up(t). From
(28), it is clear that

R-RT
[up], = 2sin(0,) (28)

0<0,(t) <. (29)

While (29) is confined to a smaller region than 0 (t) in (25),
it is mot more restrictive in the sense that

uplp = ub. (30)

The constraint in (29) is consistent with the computation
of [u(t)], in (28) since a clockwise rotation (i.e., —m <
0 (t) <0) is equivalent to a counterclockwise rotation (i.e.,
0 < 0(t) < m) with the axis of rotation reversed. Hence,
based on (80) and the functional structure of the object kine-
matics, the particular solutions 0y (t) and uy(t) can be used
in lieu of O(t) and u(t) without loss of generality and without
confining 0 (t) to a smaller region. Since, we do not distin-
gquish between rotations that are off by multiples of 27, all
rotational possibilities are considered via the parameteriza-
tion of (24) along with the computation of (28).

Remark 4 By exploiting the fact that u(t) is a unit vector
(i.e., ||ul|®* = 1), the determinant of L, (t) can be derived
as follows [16]

1

inc2 [ =
sinc < B >

det L, = (31)

From (31), it is clear that L. (t) is only singular for multi-
ples of 2r (i.e., out of the assumed workspace).

5 Velocity Identification

5.1 Objective

The objective in this paper is to develop an observer that
can be used to identify the translational and rotational
velocity of an object expressed in Z, denoted by v(t) =
[ ve we }T € RS. To facilitate this objective, the object
kinematics are expressed in the following compact form

é=Ju (32)
where the Jacobian-like matrix J(t) € R®*5 is defined as

2 AL, —2A.L,R[s1], BT
J=| = 27
0 L

(33)

where (21) and (26) were utilized, and e(t) =
[ el el ]T € RS. The subsequent development is based
on the assumption that v(¢) of (32) is bounded and is sec-
ond order differentiable with bounded derivatives. It is also
assumed that if v(¢) is bounded, then the structure of (32)
ensures that e(¢) is bounded. From (32), (33), and the pre-
vious assumptions, it is clear that if e(t), v(t) € Lo, then
from (32) we can see that é(t) € Lo. We can differentiate
(32) to show that é(t), €(t) € Loo; hence, we can use the
previous assumptions to show that

D lEBI< B Y E] <8, (34)

where 3, B85 € R are known positive constants.

Based on the error system for the object kinematics given
in (32) and the inequalities in (34), an observer is designed
in the next section to ensure that

Jim l2@)l, ||éw)| =o (35)
where the observation error signal &(t) € R® is defined as
follows

G=e—¢ (36)
where é(t) € R® denotes a subsequently designed estimate
for e(t). Once the result in (35) is obtained, additional

development is provided that proves v(t) can be exactly
identified.

5.2 Observer Development
To facilitate the following analysis, we define a filtered ob-
servation error, denoted by 7(t) € R®, as follows [22]

r=é+é. (37)

After taking the time derivative of (37), the following ex-
pression can be obtained

F=&—é+eé. (38)

Based on subsequent analysis, é(t) is generated from the
following differential expression

e=h (39)



where £(t) € RS is defined as follows®

t t
R(t) = / (K + Is)é(r)dr +/ psgn(é)dr + (K + Is)é(t)

t t

0 0 (40)
where K € R®*% is a positive constant diagonal gain ma-
trix, p € R is a positive constant, Is € R%*® denotes the
6x6 identity matrix, ¢o is the initial time, and the nota-
tion sgn(é) denotes the standard signum function applied
to each element of the vector é(t). After taking the time
derivative of (39) and substituting the resulting expression
into (38), the following expression is obtained

F=é— (K + Is)r — psgn(é) + & (41)

where the time derivative of (40) was utilized.

5.3 Analysis

Theorem 1 The observer defined in (39) and (40) can be
used to obtain the objective given in (35) provided the ele-
ments of the observer gain p is selected as follows

p> 1+ B, (42)

where B, and (B, are introduced in (34).

Proof: To prove Theorem 1, a non-negative function, de-
noted by V(¢) € R, is defined as follows
N

1

where the auxiliary function P(t) € R is defined as follows

t

Py L ¢, - / L(r)dr (44)

to

where ¢,, L(t) € R are auxiliary terms defined as follows

6
Cb £ P Z;
R (45)

The auxiliary function P(¢) introduced in (43) can be
proved to be non-negative (i.e., P(t) > 0) provided the
sufficient condition given in (42) is satisfied (proof available
on request). After taking the time derivative of (43), the
following expression is obtained

L2 r"[é — psgn(é)].

&7 (to)’ — & (t0)é(to)

. o .T
V=r"[é— (K +1Is)r —psgn(é) + €] +¢é é—L. (46)

The expression in (46) can be rewritten as follows
V= (K + Is)Irl* + lI]I* — lle]I* (47)

where (37) and (45) were utilized. After simplifying (47) as
follows

V< —K|r|*, (48)
it is clear from (43) that r(t),é(t), P(t) € Lo and that
r(t) € Lo [5]. Based on the fact that 7(t) € Lo, linear
analysis techniques [5] can be used to determined that é(t) €
Leo. Since &(t), é(t) € Loo, (36), (39), and the assumption

4The structure of the observer is motivated by the previous
work in [26] that was inspired by an example in [19].

that e(t), é(t) € Lo can be used to determine that é(¢),
é(t), A(t) € Loo. Also, since é(t), r(t), é(t), é(t) € Lo, (41)
can be used to determine that 7(t) € Lo. Based on the
fact that r(t) € Lo NL2 and 7(t) € L, Barbalat’s Lemma
[22] can be used to prove that

Jim [r(®)] = 0. (49)

Given (49), linear analysis techniques [5] can be used to
determine that the result in (35) is obtained. O

Theorem 2 Given the results in (35), the object velocity
expressed in T (i.c., v(t) = [ v Wl |T) can be exactly
determined provided the result in (35) is obtained and a
single geometric length between two feature points (i.e., s1)

is known.

Proof: Given the result in (35), the definition given in (36)
can be used to determine that

Jlim éi(t) =éi(t) Vi=1,2,..6. (50)
Based on (50), the definition in (39) can be used to conclude

that '
lim &;(t) = é&(t) Vi=1,2,..6. (51)

t—oo

Hence, (32) and (51) can be used to conclude that

lim #(t) = (Jv), Vi=1,2,..6. (52)

From the result in (52), it is clear that the object velocity
can be identified since J(t) of (33) is known and is invertible.
Each element of J(t) is known with the possible exception
of the constant depth related parameter z7.

To illustrate that the constant zi is known, consider the
following alternate representation for x%

zh = [diag(fyl —7,) + R] - [diag(¥, — ¥5)R* — R] s1.

(53)
where
71 = [diag (mi)) ™" n*Tmiz 7, = [diag (mi)] ' o
(54)
and .
mi=2L 4R (55)

"
21 21

Since mj and z} can be computed, and R* and s; are as-
sumed to be known, (55) can be used to solve for zj.

Remark 5 Given that R* is assumed to be a known ro-
tation matriz, it is straightforward to prove that the object
velocity expressed in F can be determined from the object
velocity expressed in I .

6 Conclusions

In this paper, we presented a continuous estimator strat-
egy that can be utilized to asymptotically identify the six



degree of freedom velocity of a moving object using a sin-
gle fixed camera. The design of the estimator is based on
a novel fusion of homography-based vision techniques and
Lyapunov control design tools. The only requirements on
the objects are that its velocity and its first two time deriv-
atives be bounded, and that a single geometric length be-
tween two feature points on the object be known a priori.
Future work will concentrate on experimental validation of
the proposed estimators as well as its ramifications for other
vision-based applications. Specifically, it seems that the
proposed estimator might be able to be utilized in a typical
camera-in-hand application that requires a robot manipula-
tor end-effector to track a moving object. The applicability
of the proposed approach for this type of object tracking
applications is well motivated since the estimator does not
require an explicit model for describing the movement of
the object.
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