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Abstract: In recent papers [14], [16], a new class of model-
free (i.e., the 3-dimensional task-space model of the object is
unknown) visual servoing methods was proposed that are based
on the estimation of the relative camera orientation between two
views of an object. By utilizing homography-based techniques,
the control problem is decoupled by separating the rotation and
translation components. A single controller is used to control
the rotation component, and the class members consist of var-
ious translation controllers. Each of the current class members
has been proven to yield asymptotic regulation in the presence
of uncertainty in the intrinsic and extrinsic calibration parame-
ters. New control development and stability analysis techniques
are crafted in this paper to develop a new translation controller
that yields exponential rotation and translation regulation in
the presence of uncertainty in the intrinsic and extrinsic cali-
bration parameters. Extensions to this research can be used to
yield exponential regulation by the other translation controllers
in the asymptotic class presented in [14].

I. Introduction

Motivated by the significant impact that may be realized by
enabling robotic systems with the ability to perform tasks based
on a sense of perception, a myriad of research has been directed
at vision related issues. One issue that has limited the robust-
ness of vision-based robotic control systems is the lack of depth
information since the image-space is a 2-dimensional (2D) pro-
jection of the 3D task-space. To compensate for the lack of
depth information two mainstream approaches have been de-
veloped. The first approach requires a 3D task-space model of
the object so that the depth can be estimated from the distance
between image feature points. The second approach requires
a stereo-based camera configuration; however, the requirement
for two cameras increases the cost and computational and power
requirements of the system while reducing the overall system re-
liability. Another issue that has limited the robustness of vision-
based robotic control systems is the potential for corrupt sensor
data due to the lack of exact camera calibration. Specifically,
based on the fact that the camera output is in the image-space
and robot controllers are computed in terms of the task-space
(joint space), an optic model is often employed to relate image-
space data to the task-space. To relate the image-space to the
task-space, both intrinsic and extrinsic parameters1 of the optic

∗This research was supported in part by the U .S . DOE Offi ce of B iologi-
ca l and Environm ental Research (OBER) Environm ental Management Sciences
Program (EMSP) pro jects ID No. 82794 and ID No. 82797 at ORNL, by a sub-
contract to ORNL by the F lorida Department of C itrus through the University
of F lorida, and by U .S. NSF Grant DM I-9457967, ONR Grant N00014-99-1-0589,
a DOC Grant, and an ARO Automotive Center Grant.
1The camera calibration parameters are composed of the so-called in-

trinsic parameters (i.e., image center, camera scale factors, and camera
magnification factor) and extrinsic parameters (i.e., camera position and
orientation).

model are required. If these parameters are not exactly known,
then performance degradation and potential unpredictable re-
sponse from the system may occur. Motivated by the desire
to incorporate robustness to these parameters, several adaptive
and robust controllers have been designed (e.g., see [7], [12],
[13], [18]). Unfortunately, much of the previous work either
constrains the visual servoing problem to a planar case or relies
on one of the aforementioned methods to estimate the object
depth.

Due to advances in computer vision, a new class of monocu-
lar visual servo controllers has been recently developed by Malis
and Chaumette in [14] that only requires the relative informa-
tion between a desired (reference) image and the current image.
Moreover, the stability of these controllers can be proven despite
the lack of exact knowledge of the camera calibration parame-
ters. To achieve these advancements, the model-free class of
controllers exploits the relative information between a desired
image and the current image to construct a Euclidean homog-
raphy that can be used to decouple the rotation and translation
components of the visual servo problem. This decoupling strat-
egy has been recently exploited to develop a series of results.
For example, in a series of papers by Malis and Chaumette
(e.g., [1], [2], [15], and [16]) various kinematic control strate-
gies (coined 2.5D visual servo controllers) exploit information
from the task-space (obtained through a projective Euclidean
reconstruction from the image data) to regulate the rotation
error system, while information from the 2D image-space is uti-
lized to control the translation error system. In [6], Deguchi
developed two algorithms to decouple the rotation and trans-
lation components using a homography and an epipolar con-
dition. Specifically, Deguchi decomposes the translation and
rotation components through a homography and states that
the 2.5D controller given in [2] can be utilized. As an alter-
nate method, Deguchi also develops a kinematic controller in
[6] that utilizes task-space information to regulate the transla-
tion error and image-space information to regulate the rotation
error. More recently, Corke and Hutchinson [5] also developed
a hybrid image-based visual servoing scheme that decouples ro-
tation and translation components about the z-axis from the
remaining degrees of freedom. Motivated by the desire to ac-
tively compensate for the aforementioned depth information, [3]
developed an adaptive kinematic controller to ensure uniformly
ultimately bounded (UUB) set-point regulation of the image
space errors while compensating for the unknown depth infor-
mation, provided conditions on the translational velocity and
the bounds on uncertain depth parameters are satisfied. In [4],
Conticelli et al. proposed a 3D depth estimation procedure that
exploits a prediction error provided a positive definite condition
on the interaction matrix is satisfied. In [17], Taylor et al. devel-
oped a kinematic controller that utilizes a constant, best-guess
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estimate of the calibration parameters to achieve local set-point
regulation; although, several conditions on the rotation and cal-
ibration matrix are required. In [9], Fang et al. recently devel-
oped a 2.5D visual servo controller to asymptotically regulate
a manipulator end-effector by exploiting Lyapunov-based tech-
niques to develop an adaptive update law that compensated for
an unknown depth parameter. Built on the results of [9], Fang
et al. designed a homography-based visual servo controller in
[10] that asymptotically regulates the position of a wheeled mo-
bile robot despite nonholonomic constraints and parametric un-
certainty in the depth parameter. Although the results in [9]
and [10] were achieved despite unknown depth information, the
intrinsic and extrinsic camera parameters were required to be
known; hence, motivation exists to develop controllers that are
robust to uncertain intrinsic and extrinsic camera parameters.

In this paper, we extend the class of model-free controllers in
[14] to include controllers that yield exponential translation (as
opposed to the asymptotic results in [14]). That is, based on the
same rotation controller as the previous asymptotic controllers,
new control development and stability analysis techniques are
crafted in this paper to develop a new translation controller
that yields an exponential result. For completeness and to pro-
vide foundation for subsequent development, we first develop a
closed-loop error system and stability theorem for the rotation
controller that is developed in [14]. We then develop a new hy-
brid translation controller in the presence of uncertainty in the
intrinsic and extrinsic camera calibration parameters. In con-
trast to the asymptotic results developed in [14], the controller
is proven to yield exponential stability results. Specifically, the
authors of [14] relied on linearization methods (e.g., Theorem
2 of [14]) or perturbation-based analysis methods to conclude
local or practically global asymptotic stability. The term prac-
tically global is used in lieu of global since the result is not valid
for the singular point associated with the angle of rotation or for
nonpositive values for the depth from the camera to the target
object. The results in this paper are developed by a nonlinear
Lyapunov-based approach and formal stability proofs can be
developed to prove practically global exponential rotation and
translation regulation.

II. Model Development

A. Camera Model

Consider two orthogonal coordinate systems, denoted by F
and F ∗, where F is attached to a camera that is held by the
robot end-effector, and F ∗ is a fixed coordinate system that
represents the constant, desired position and orientation of F .
Also consider a reference plane π that is defined by four2 target
points Oi ∀i = 1, 2, 3, 4 where the actual and desired 3D
coordinates of Oi expressed in terms of F and F ∗ are denoted
by Xi (t) , Yi (t) , Zi (t) ∈ R and X∗i , Y

∗
i , Z

∗
i ∈ R, respectively,

and are defined as elements of m̄i (t), m̄∗i ∈ R3 as follows (see
Figure 1)

m̄i =
£
Xi Yi Zi

¤T (1)

m̄∗i =
£
X∗i Y ∗i Z∗i

¤T
. (2)

Since the task-space is projected onto the image-space, normal-
ized coordinates, denoted by mi (t), m∗i , of the targets points

2In general, only 3 points are required to define a plane, however, in the
subsequent analysis, 4 target points located on the plane π are required.

m̄i (t) and m̄∗i , respectively, can be defined as follows

mi =
m̄i

Zi
=

·
Xi

Zi

Yi
Zi

1

¸T
(3)

m∗i =
m̄∗i
Z∗i

=

·
X∗i
Z∗i

Y ∗i
Z∗i

1

¸T
(4)

where the standard assumption is made that Zi (t) > 0 and
Z∗i > 0.
In addition to having a task-space coordinate, each target

point will also have a projected pixel coordinate expressed in
terms of F denoted by ui (t) , vi (t) ∈ R, which are defined as
elements of pi (t) as follows

pi =
£
ui vi 1

¤T (5)

where the projected pixel coordinates of the target points are re-
lated to the normalized task-space coordinates by the following
global invertible transformation

pi = Ami (6)

where A ∈ R3×3 is a known, constant, and invertible intrinsic
camera calibration matrix that is explicitly defined as [15]

A =

 fku −fku cotφ u0

0
fkv
sinφ

v0

0 0 1

 . (7)

In (7), the constant parameters u0, v0 ∈ R denote the pixel
coordinates of the principal point (i.e., the image center that is
defined as the frame buffer coordinates of the intersection of the
optical axis with the image plane), ku, kv ∈ R represent camera
scaling factors, φ ∈ R is the angle between the camera axes, and
f ∈ R denotes the camera focal length. Similarly, the constant,
desired pixel coordinates expressed in terms of F ∗ denoted by
u∗i , v

∗
i ∈ R, are defined as elements of p∗i as follows

p∗i =
£
u∗i v∗i 1

¤T (8)

and can be related to the normalized coordinates m∗i by the
following relationship

p∗i = Am
∗
i . (9)

From (6) and (9), it is clear that the normalized task-space
coordinates of a feature point can be determined from the pixel
coordinates of the point. However, this relationship requires
the intrinsic calibration parameters to be exactly known. Since
the intrinsic camera calibration matrix A is difficult to exactly
determine in practice, the computed normalized coordinates are
actually estimates, denoted by m̂i (t) , m̂

∗
i ∈ R3, of the true

values. These estimates can be expressed as follows [14]

m̂i = Â
−1pi = Ãmi (10)

m̂∗i = Â
−1p∗i = Ãm

∗
i (11)

where Â ∈ R3×3 denotes a best-guess estimate of the intrinsic
camera calibration matrix A, and the calibration error matrix
Ã ∈ R3×3 is defined as follows

Ã = Â−1A =

 Ã11 Ã12 Ã13
0 Ã22 Ã23
0 0 1

 (12)

where Ã11, Ã12, Ã13, Ã22, Ã23 ∈ R denote unknown intrinsic
calibration mismatch constants.
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B. Homography Development

Based on geometric relationships between the desired image
of a target and the current target image (see Figure 1), mi(t)
and m∗i can be related as follows [9] [15]

mi = αiHm
∗
i (13)

where αi (t) ∈ R is an unknown scaling factor defined as

αi =
Z∗i
Zi
, (14)

and H (t) ∈ R3×3 denotes the following Euclidean homography

H = R+ xhn
∗T . (15)

In (15), R (t) ∈ SO(3) denotes the rotation from the desired
task-space coordinates to the actual task-space coordinates of
the camera, n∗ ∈ R3 denotes the constant unit normal from F ∗

to π, and xh (t) ∈ R3 is related to the actual translation vector
from F to F ∗, denoted by xf (t) ∈ R3, as follows

xf = xhd
∗ (16)

where d∗ ∈ R denotes a constant, unknown distance from F ∗

to π. Since mi(t) and m∗i can not be exactly determined, the
estimates in (10) and (11) can be substituted into (13) to obtain
the following relationship

m̂i = αiĤm̂
∗
i (17)

where Ĥ (t) ∈ R3×3 denotes the estimated Euclidean homogra-
phy [14]

Ĥ = ÃHÃ−1. (18)

Since m̂i(t) and m̂∗i can be determined from (10) and (11), a set
of 12 linear equations can be developed from the 4 image point
pairs, and (17) can be used to solve for Ĥ (t) (see [9] for addi-
tional details regarding the set of linear equations). Provided
additional information is available (e.g., at least 4 vanishing
points), various techniques can be used to decompose Ĥ(t) to
obtain the estimated rotation and translation components as
follows

Ĥ = R̂+ x̂hn̂
∗T (19)

where R̂ (t) ∈ R3×3 is related to R (t) as follows

R̂ = ÃRÃ−1, (20)

and x̂h (t) ∈ R3, n̂∗T ∈ R3 denote the estimate of xh (t) and n∗,
respectively, and are defined as follows

x̂h = γÃxh n̂∗ =
1

γ
Ã−Tn∗ (21)

where γ ∈ R denotes the following positive constant

γ =
°°°Ã−Tn∗°°° . (22)

Remark 1: Vanishing points are points on the plane at in-
finity. As the reference plane π approaches infinity, the scaling
term d∗ also approaches infinity, and xh(t), x̂h(t) approach zero.
Hence, (19) can be used to conclude that Ĥ(t) = R̂(t) on the
plane at infinity, and the four vanishing point pairs can be used
along with (17) to determine R̂(t). Once R̂(t) has been deter-
mined, then the original four image point pairs can be used to
determine x̂h(t) and n̂∗(t).

n *

R

Oi

d*

Y

Z*

Y*

X*
Z

X

π

n

d

x f

mi
m*i

FF ∗

Fig. 1. Motion and structure parameters

C. Control Objective

The objective of this new class of controllers is to ensure that
the position/orientation of the camera coordinate frame F is
regulated to the desired position/orientation F ∗. The camera
is mounted on the end-effector of a robot manipulator. Hence,
to control the position/orientation of F , a relationship is re-
quired to relate the linear and angular camera velocities to the
linear and angular velocities of the robot end-effector (i.e., the
actual kinematic control input signals). This relationship is de-
pendent on the extrinsic calibration parameters related to the
position and orientation of the camera with respect to the end-
effector. Specifically, the relationship between the linear and
angular velocity of the camera with respect to the end-effector
can be determined as follows [14]·

vc
ωc

¸
=

·
Rr [tr]×Rr
0 Rr

¸ ·
vr
ωr

¸
(23)

where vc(t), ωc(t) ∈ R3 denote the linear and angular velocity
of the camera, respectively, while vr(t), ωr(t) ∈ R3 represent
the respective linear velocity and angular velocity of the end-
effector, Rr ∈ SO(3) is the unknown constant rotation between
camera and end-effector frames, and tr ∈ R3 denotes the un-
known constant translation between camera and end-effector
frames (Rr and tr consist of the so-called camera extrinsic ma-
trix).
Based on the development given in Section II-B, it can be

shown that the control objective is achieved if the Euclidean
homography H (t) approaches the identity matrix. Mathemati-
cally, it can be shown that if

R(t)→ I3, (24)

and one target point is regulated to its desired location in the
sense that

m̄i(t)→ m̄∗i (25)

then the Euclidean homography approaches the identity matrix
as follows

H(t)→ I3. (26)

In the subsequent analysis for the rotation controller, the ob-
jective is to force the angle of rotation to zero. If the angle of
rotation is zero, then the objective in (24) will be met. In the
analysis for the subsequent hybrid controllers, the objective is
to prove that mi(t)→ m∗i and that Zi(t)→ Z∗i . If mi(t)→ m∗i
and Zi(t) → Z∗i , then (1)-(4) can be used to conclude that
the objective in (25) will be met. Provided these objectives can
be met with an exponential rate of convergence, then the main
objective in (26) will be satisfied exponentially fast.
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III. Rotation Control

To quantify the rotation mismatch between F and F ∗ (i.e.,
R (t) given in (15)), a rotation error-like signal, denoted by
eω (t) ∈ R3, is defined by the angle axis representation as follows
[16]

eω = uθ (27)

where u (t) ∈ R3 represents a unit rotation axis, and θ (t) ∈ R
denotes the rotation about u(t) that is assumed to be confined
to the following region [16]

−π < θ (t) < π. (28)

The parameterization u (t) θ (t) is related to the rotation matrix
R (t) by the following expression

R = I3 + sin θ [u]× + 2 sin
2 θ

2
[u]2× (29)

where the notation [u]× denotes the 3× 3 skew-symmetric ma-
trix associated with u(t). After some mathematical develop-
ment, the open-loop error dynamics for eω(t) can be expressed
as follows [16]

ėω = −LωRrωr (30)

where Lω (t) ∈ R3×3 is defined as follows

Lω = I3 − θ

2
[u]× +

1− sinc (θ)

sinc2
µ
θ

2

¶
 [u]2× . (31)

Since the rotation matrix R (t) and the rotation error eω (t)
defined in (27) are unmeasurable, an estimated rotation error
êω(t) ∈ R3 is defined as follows

êω = ûθ̂ (32)

where û (t) ∈ R3, θ̂ (t) ∈ R represent the estimate of u (t) and
θ (t), respectively. Based on (20), it is clear that R̂ (t) is sim-
ilar to R (t). By exploiting the properties of similar matrices
(i.e., similar matrices have the same trace and eigenvalues), the
following estimates can be determined [14]

θ̂ = θ û = µÃu (33)

where µ ∈ R denotes the following unknown positive constant

µ =
1°°°Ãu°°° . (34)

After substituting (33) into (32), êω(t) can be expressed in terms
of eω(t) as follows

êω = µÃeω (35)

where (27) has been utilized. Given the open-loop rotation error
dynamics in (30), the control input ωr (t) can be designed as
follows

ωr = λwR̂
T
r êω (36)

where λω ∈ R denotes a positive control gain, and R̂r ∈ R3×3
denotes a constant best-guess estimate of Rr. After substituting
(36) into (30) for ωr (t), the following closed-loop dynamics can
be obtained [14]

ėω = −λwµLωR̃rÃeω (37)

where (35) has been utilized, and the rotation estimate error
matrix R̃r ∈ R3×3 is defined as follows

R̃r = RrR̂
T
r . (38)

Remark 2: The angle axis representation in (27) is not
unique, in the sense that a rotation of −θ (t) about −u(t) is
equal to a rotation of θ (t) about u(t). A particular solution for
θ (t) and u(t) can be determined as follows

θp = cos
−1
µ
1

2

¡
tr
¡
R̄
¢− 1¢¶ [up]× =

R̄− R̄T
2 sin(θp)

(39)

where the notation tr(·) denotes the trace of a matrix and [up]×
denotes the 3×3 skew-symmetric form of up(t). From (39), it is
clear that

0 ≤ θp (t) ≤ π. (40)

While (40) is confined to a smaller region than θ (t) in (28), it
is not more restrictive in the sense that

upθp = uθ. (41)

The constraint in (40) is consistent with the computation of
[u (t)]× in (39) since a clockwise rotation (i.e., −π ≤ θ (t) ≤ 0)
is equivalent to a counterclockwise rotation (i.e., 0 ≤ θ (t) ≤ π)
with the axis of rotation reversed. Hence, based on (41) and
the functional structure of the object kinematics, the particular
solutions θp (t) and up(t) can be used in lieu of θ(t) and u(t)
without loss of generality and without confining θ (t) to a smaller
region. Since we do not distinguish between rotations that are
off by multiples of 2π, all rotational possibilities are considered
via the parameterization of (27) along with the computation of
(39).
Theorem 1: The kinematic control input given in (36) ensures

that eω (t) defined in (27) is exponentially regulated in the sense
that

keω(t)k ≤ keω(0)k exp(−λwµβ0t), (42)

provided the following inequality is satisfied

xT
³
R̃rÃ

´
x ≥ β0 kxk2 for ∀x ∈ R3 (43)

where

xT
³
R̃rÃ

´
x = xT

³
R̃rÃ

´T
x = xT

 R̃rÃ+
³
R̃rÃ

´T
2

 x
(44)

for ∀x ∈ R3, and β0 ∈ R denotes the following minimum eigen-
value

β0 = λmin


R̃rÃ+

³
R̃rÃ

´T
2

 . (45)

Proof: Details available upon request, also see [14].

IV. New Translation Control Class

As stated previously, the contribution of this paper is to ex-
tend the class of model-free controllers developed in [14] to in-
clude a new set of translation controllers that yield exponential
stability results (as opposed to the asymptotic results presented
in [14]). In [14], three different sets of translation controllers
are developed including a hybrid controller, an alternate hybrid
controller, and a model-free position-based controller. In this
paper, we develop a hybrid translation controller. Extensions to
the alternate hybrid controller and a model-free position-based
controller can also be developed (details available upon request).
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A. Hybrid Translation Control

A.1 Control Design

To quantify the translation mismatch between the actual and
desired 3D Euclidean camera position, a hybrid3 translation
error signal, denoted by ev (t) ∈ R3, is defined as follows

ev = me −m∗e (46)

whereme (t) ∈ R3 denotes the extended coordinates of an image
point on π in terms of F and is defined as follows4

me =
£
me1 (t) me2 (t) me3 (t)

¤T (47)

=

·
X1

Z1

Y1
Z1

ln (Z1)

¸T
and m∗e ∈ R3 denotes the extended coordinates of the corre-
sponding desired image point on π in terms of F ∗ as follows

m∗e =
£
m∗e1 m∗e2 m∗e3

¤T (48)

=

·
X∗1
Z∗1

Y ∗1
Z∗1

ln (Z∗1 )
¸T

where ln (·) denotes the natural logarithm. Substituting (47)
and (48) into (46) yields

ev =

·
X1

Z1
− X∗1
Z∗1

Y1
Z1
− Y ∗1
Z∗1

ln

µ
Z1
Z∗1

¶ ¸T
(49)

where the ratio Z1
Z∗1

can be computed from (14) and the decom-
position of the estimated Euclidean homography in (17), despite
the fact that the individual signals Z∗1 and Z1(t) are not mea-
surable. To facilitate the subsequent development, an estimate
for (49), denoted as êv(t) ∈ R3, is defined as follows

êv =

·
m̂e1 − m̂∗e1 m̂e2 − m̂∗e2 ln

µ
Z1
Z∗1

¶ ¸T
(50)

where m̂e1(t), m̂e2(t), m̂
∗
e1, m̂

∗
e2 ∈ R denote estimates of

me1(t), me2(t), m
∗
e1, m

∗
e2, respectively, that can be calculated

from (10) and (11).
By taking the time derivative of (49) and then substituting

(36) into the resulting expression for ωr (t), the following sim-
plified error dynamics for ev(t) can be obtained [15]

ėv = LvRrvr + λw
¡
Lv [tr]× + Lvω

¢
R̃r êω (51)

where (23), (38), and the following fact have been utilized [16]

.
m̄1 = −vc + [m̄1]× ωc. (52)

In (51), Lv(t), Lvω (t) ∈ R3×3 denote the following matrices

Lv =
1

Z1

 −1 0 me1

0 −1 me2

0 0 −1

 (53)

Lvω =

 me1me2 −1−m2
e1 me2

1 +m2
e2 −me1me2 −me1

−me2 me1 0

 . (54)

3The translation error introduced in (46) is described as a hybrid, be-
cause it is a composed of the normalized coordinates (obtained from the
image-space) along with the reconstructed task-space depth signal.
4To develop the translation controller a single feature point can be uti-

lized. Without loss of generality, the subsequent development will be
based on the image point O1, and hence, the subscript 1 will be utilized
in lieu of i.

To facilitate the subsequent development, an estimates for (53),
denoted by L̂v(t) ∈ R3×3, is defined as follows

L̂v =
1

Ẑ1

 −1 0 m̂e1

0 −1 m̂e2

0 0 −1

 (55)

where m̂e1(t), m̂e2(t) were introduced in (50), and Ẑ1(t) ∈ R
denotes an estimate of the depth Z1(t). To determine the esti-
mate Ẑ1(t), we note that

Z1 =
1

α1
Z∗1 (56)

where α1 is determined from the decomposition of the homog-
raphy in (17). Therefore, the estimated depth Ẑ1(t) can be
determined as follows

Ẑ1 =
1

α1
Ẑ∗1 (57)

where Ẑ∗1 ∈ R denotes a constant estimate of the unknown
depth Z∗1 . Given the definition of L̂v(t) in (55), the following
inequality can be developed (details available upon request)

xT
³
L̂vL̂

T
v

´
x ≥ 1

Ẑ21
f(m̂e1, m̂e2) kxk2 for ∀x ∈ R3, (58)

where f(m̂e1, m̂e2) ∈ R denotes the following positive function

f(m̂e1, m̂e2) =
1

6
m̂2
e1 +

1

6
m̂2
e2 +

1

3
(59)

−1
3

sµ
1

2
m̂2
e1 +

1

2
m̂2
e2 + 1

¶2
− 1 .

From (59), it is clear that if m̂e1(t), m̂e2(t) ∈ L∞, then
f(m̂e1, m̂e2) ∈ L∞. Moreover, it can be proven that
f(m̂e1, m̂e2) can be lower bounded by a positive constant c1 ∈ R
as follows (details available upon request)

f(m̂e1, m̂e2) > c1. (60)

Based on the structure of the error system developed in
(51) and the subsequent stability analysis, the following hybrid
translation controller can be developed

vr = −λvR̂Tr L̂Tv êv + ϕ (61)

where R̂Tr , êv(t), and L̂v(t) are introduced in (36), (50), and
(55), respectively, and the auxiliary signal ϕ(t) ∈ R3 is designed
as follows

ϕ =
³
−kn1Ẑ21 − kn2Ẑ21 kêvk2

´
R̂Tr L̂

T
v êv (62)

where kn1, kn2 ∈ R represent positive constant control gains,
and Ẑ1(t) is defined in (57). In (61), λv(t) ∈ R denotes a
positive gain function selected as follows

λv = kn0 +
Ẑ21

f (m̂e1, m̂e2)
(63)

where kn0 ∈ R is a positive constant, and f (m̂e1, m̂e2) was
defined in (59). After substituting (61) into (51) for vr(t), the
closed-loop dynamics for ev(t) can be obtained as follows

ėv = −λvLvR̃rL̂Tv êv+LvRrϕ+λw
¡
Lv [tr]× + Lvω

¢
R̃r êω (64)

where (35) has been utilized.
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Based on (10), (11), (47), (48), and (50), the following prop-
erty can be determined

êv = Bev (65)

where B ∈ R3×3 is a constant, invertible matrix defined as
follows

B =

 Ã11 Ã12 0

0 Ã22 0
0 0 1

 . (66)

Furthermore, based on the special structure of the matrix Lv(t)
and the fact that Ã defined in (12) is upper-triangular, B can
also be expressed as follows

B = ηL̂vÃL
−1
v (67)

where η ∈ R is defined as

η =
Ẑ1
Z1

(68)

and L−1v (t) is given by the following expression

L−1v = Z1

 −1 0 −me1

0 −1 −me2

0 0 −1

 . (69)

Note that by dividing (57) by (56), it is clear that

Ẑ1
Z1

=
Ẑ∗1
Z∗1
, (70)

and hence, from (68) it is clear that η is a positive constant.
After taking the time derivative of (65) and substituting (64)
into the resulting expression for ėv(t), the closed-loop dynamics
for

.

êv(t) can be obtained as follows
.

êv = −λvηL̂vÃR̃rL̂Tv êv + ηL̂vÃRrϕ (71)

+λwL̂vÃ
³
η [tr]× − Ẑ1 [m1]×

´
R̃r êω

where (67), (68), and the following equality have been utilized

L−1v Lvω = −Z1 [m1]× . (72)

A.2 Stability Analysis

Theorem 2: The kinematic control input given in (61) and
(62) ensures that the hybrid translation error signal ev (t) de-
fined in (49) is exponentially regulated in the sense that

kev(t)k ≤
p
2ζ0

°°B−1°° exp(−ζ1
2
t) (73)

provided (43) is satisfied, where B is defined in (66), and ζ0,
ζ1 ∈ R denote the following positive constants

ζ0 =
1

2
kêv (0)k2 +

δµ2
°°°Ã°°°2 keω(0)k2

|2ηβ0 − 2λwµβ0|
(74)

ζ1 = min {2ηβ0, 2λwµβ0}
where Ã, µ, β0, λw, and η are defined in (12), (34), (36), (45),
and (68), respectively. In (74), δ ∈ R denotes a positive constant
that can be made arbitrarily small by increasing values of kn0,
kn1, kn2. If η = λwµ, a repeated root exists for ev(t) and (74)
is modified as follows

ζ0 =
1

2
kêv (0)k2 +

µ
δµ2

°°°Ã°°°2 keω(0)k2¶ t, ζ1 = 2ηβ0.

Proof: Details available upon request.
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