

SSFNet –
“Simulating large, high-speed networks on a
supercomputer”*
James A. Rome, Oak Ridge Laboratory
William R. Wing, Oak Ridge National Laboratory

Summary

The Java-based SSFNet network simulator has been ported to the IBM supercomputers at ORNL and
used both to model the large ORNL-reservation network and to simulate the NSF TeraGrid high-speed
cross-country network. The TeraGrid network was loaded with sufficient traffic to cause packet loss.
Tools were developed to create SSFNet models using actual network data.

Introduction
Simulation of computer networks is much cheaper, faster, and easier than actually building and testing the
hardware itself. For example, TeraGrid achieves its speed by bonding three or four 10 Gbps pipes to
achieve greater throughput. We wanted to see whether this was an effective means of increasing the over-
all throughput by performing a simulation. We used SSFNet, an open-source network simulation envi-
ronment that can run under either Java or C++. The ORNL supercomputers consist of multiple nodes with
multiple processors on each node, a configuration that is reminiscent of the network we were trying to
simulate. Accordingly, with the help of Srdjan Petrovic (Dartmouth University), we ported SSFNet to the
Eagle and Cheetah supercomputers at ORNL.

There is more to the simulation than just running the code. SSFNet uses domain modeling language
(DML) as its input to describe the network configuration. For a large network, with hundreds or thou-
sands of elements, an automated way to read in network topology, plot, and manipulate it is required.
Accordingly, NetViewer was developed to do these tasks. NetViewer is available at
http://www.ornl.gov/~jar/NetViewer/Manual.htm. The topology of a large network (e.g., ORNL’s net-
work) would be extremely tedious and error-prone to enter by hand. We created a companion program
called ORNLNet that created a DML file of the actual ORNL network topology in two different ways. All
network devices are supposedly entered into an Oracle database, and this was parsed and pieced together
to obtain the topology including end-node PCs. Many inaccuracies in the data were discovered as a result
of this effort. The other, more accurate technique uses the topology dump of HP’s OpenView to deter-
mine the network topology. However, this only lists SNMP-managed devices.

Figure 1 shows the topology of ORNL using OpenView data as displayed by NetViewer.

* The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No.
DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Fig. 1. The ORNL network backbone in 2002. The green nodes are routers or smart switches. The Pink
nodes are subnets that expand if clicked to show other routers and attached computers. NetViewer allows
the nodes to be dragged around to make user-comprehensible pictures, and a right click of any node will
display its DML tree. Other operations allow the DML attributes to be edited, ports to be assigned into
OSPF areas, and traffic to be inserted on the Net. A typical DML file for a network of this size is several
hundreds of kilobytes without any traffic.

With the current release of SSFNet, it is impossible to simulate the ORNL network because as yet, it con-
tains no model for a smart switch. In addition, in SSFNet, every subnet must contain a router, which is
also not necessary in a switched network. Since writing a switch module (and modifying the SSFNet
kernel to support true layer-two devices) represented a bigger task than we wanted to tackle while still
becoming acquainted with the SSFNet code we postponed this task.

We turned instead to a more amenable topology, the NSF-sponsored 40-Gbps cross-country backbone
network known as the TeraGrid. The TeraGrid topology is shown in Fig. 2.

Fig. 2. The TeraGrid topology as plotted by NetViewer. The routers are green, the subnets pink, and the
end nodes blue. There are 700 clients and servers.

SSFNet required several extensions in order to be able to simulate the TeraGrid. The built-in modules are
limited to relatively low bandwidths because of a 64 kB buffer size. The buffers all had to be extended to
be at least twice the delay-bandwidth product—hundreds of megabytes. Major rewrites of the IP code
were required in order to simulate the link-bonded parallel pipes that connect the major grid nodes. Sev-
eral different approaches were tried, and it was discovered that it is crucial to prevent out-of-order pack-
ets. Eventually, a hash of the source, destination, and protocol was used to select a fixed path for each
TCP connection. (It is the same hash used by the TeraGrid router manufacturer to solve the same problem
in the real network.) Finally, on a distributed supercomputer, the diagnostics must be confined to the
code that runs on a given node of the supercomputer, because files are local to each node until the job is
completed. Accordingly, all the diagnostics were rewritten in order to determine the performance of the
simulation and of TeraGrid. This locality of data makes it awkward to do things such as follow a single
packet through the system.

75 simulated FTP sessions were used to create traffic on TeraGrid. One issue of performance is how well
the hash works that determines pipe usage. The network architecture assumes that the law of large num-
bers will apply (i.e., many uncorrelated streams at once). However remembering that the TeraGrid is to be
a computer backplane, the highly correlated 1 GB file transfers that we simulated are typical of the use it
will see. Figure 3 shows the pipe usage in the simulation.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

choice

0

6

12

0

6

12

0

6

12

C
ou

nt

Host.toHost: 1:2 Host.toHost: 1:3:3 Host.toHost: 1:4:4 Host.toHost: 2:1

Host.toHost: 2:5:5 Host.toHost: 2:6:6 Host.toHost: 2:7:7 Host.toHost: 3:1

Host.toHost: 4:1 Host.toHost: 5:2 Host.toHost: 6:2 Host.toHost: 7:2

Hash performance

Fig. 3. Pipe utilization with 75 2-way connections. The plots with four bars are the main cross-country
links. One pipe is under-utilized. The other issue is that the hash treats the low-bandwidth ACK channel
the same as the high-bandwidth data channel, so the bandwidth split may be worse than is shown in the
plot.

The network traffic was increased until a packet dropped. The supercomputer run created over 50 GB of
data per run in separate files, if all packets are tracked. The enormity of finding the missing packet in the
huge amount of data led us to run the simulation on a single node with 2 GB of memory. To accommo-
date the reduced resources, we reduced all bandwidths by a factor of 10. On a single node, we can follow
the packets for each individual TCP connection.

Figure 4 (a semi-log plot TCP dump) shows the path taken by each packet in one of the ftp sessions. This
session goes from a server in San Diego to a client in Pittsburgh. It is very difficult to find the lost packet
until it gets retransmitted. An enlargement of the end of the transmission is shown in Fig. 4. Note that
these recurring drops prevent the TeraGrid from achieving its predicted performance.

Fig. 4. Performance of a connection when a packet is dropped. The sequence was retransmitted, but the
retransmitted packet was also dropped, so the connection had to restart (not shown). Initially, the transit
time for the packet is entirely due to the number of bytes in the NIC output buffer (490) and the time to
empty the buffer. But as the network loads up, the delay occurs between hosts 2 and 6.

Fig. 5. An enlargement of Fig. 4. It is easy to see that the retransmitted packet was dropped again by
router 6.

However, one of the other issues is the performance of the supercomputer in solving this problem. There
is a large difference between the time it takes to go from the client or server to its router (a few miles) and
the time to cross the country (a few thousand miles). Messages must be passed among the supercomputer
nodes at a timescale determined by the shortest link. This makes distributed node supercomputers quite
inefficient at solving problems such as TeraGrid. The simulation took about the same wall clock time on a
PC with 2 GB of memory. However, other supercomputer architectures (like the vector Cray X1) should
be more efficient for these problems.

Future simulations of interest
Even the “simpler” TeraGrid topology still simulates over 1000 nodes in a realistic environment. We en-
countered many of the same performance issues with TCP that the Net100 team has discovered. We also
studied some of the modifications to the TCP protocol to add resistance to things like out of order pack-
ets. For example, we increased the number of allowed duplicate ACKs before retransmission from 3 to
12, but this only delayed the inevitable. It would be straight-forward to implement more of the protocol
changes advocated by Net100, and of course the instantaneous performance is always available in a simu-
lation to fine tune these parameters.

As soon as switches are added to SSFNet, more realistic campus-wide networks can be properly simu-
lated to see whether the actual bottlenecks to increased transfer rates might actually lie in the local net-
work rather than in the backbone.

