
SSFNet –
“Simulating large, high-speed 
-networks on a supercomputer” 

James A. Rome
William R. Wing

ORNL
MICS Review August 2003

The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government 

retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.



Motivation

• Next-Gen Research needs a Next-Gen Simulator
• Commercial products too enterprise focused

⇒ Protocols (and all other code) are black boxes
⇒ Nice GUI’s, drag-n-drop nets
⇒ GUI’s fail beyond a few hundred nodes and devices

• R&D Simulators (ns2) best at simulating new 
protocols under limited conditions

• Model a significant piece of the Internet
⇒ Thousands of nodes
⇒ Mixture of real traffic



SSFNet overview

• SSFNet is flexible network simulator implemented in Java 
and C++. 

• We used the Java version which runs on everything, 
especially our supercomputers.

• Input to SSFNet is via a domain modeling language (DML) 
file that is reminiscent of XML.

• DML file for the ORNL network is ~ 200kB with just the 
network backbone (no protocols or traffic).

• To simulate a large network, we rapidly realized that 
creating and editing DML files by hand was impractical.



ORNLNet

Tedious and error-prone to enter data for a real 
enterprise network by hand. We had two options to 
create the basic DML file (devices and 
connectivity):
• HP OpenView topology dump

⇒ Shows all devices managed by snmp accurately, but 
no user devices

• Oracle user network registration database
⇒ Designed for cost recovery, not network topology
⇒ Should have everything but entered manually
⇒ Many errors were discovered in the database (and 

corrected).



NetViewer

NetViewer manipulates DML files and allows 
• Editing of the DML data
• Plotting the topology and “prettifying” it

⇒ Examining DML for each device
⇒ Specifying the OSPF areas by selecting ports

• Specifying protocols for each device
• Specifying the traffic (very verbose in DML file)

http://www.ornl.gov/~jar/NetViewer/Manual.htm
Has both ORNLNet and NetViewer Java code.



The ORNL network
backbone in 2002



Limitations in SSFNet

Creating the DML file for ORNL pointed out a lot if 
missing pieces in SSFNet
• No support for layer 2 devices (I cobbled a 

fudge)
• Limited to 64 KB windows 

⇒ No window negotiation support
⇒ Luckily a Java int is 2 GB

• Each subnet needs to have a router in it
⇒ We have dozens of subnets hanging off one switch

• OSPF supports point-to-point links only.



TeraGrid (http://www.teragrid.org/)

We decided to simulate a problem that was within the 
SSFNet capabilities, TeraGrid.
• TeraGrid is supposed to support 1 Gbps sessions
• 40 Gbps cross-country backbone with 30 Gbps links to 

major supercomputer centers
⇒ Achieved via a network of 10 Gbps parallel pipes.
⇒ Pipes are link-bonded to look like a single IP connection

• 2 main hubs (LA and Chicago) connected by 4 pipes
• 5 (eventually) supercomputer sites connected to hubs by 

3 pipes



TeraGrid Topology

4 cross-country
parallel 10 Gbps pipes

3 local 10 Gbps
parallel pipes

“West”

“Midwest”

Site Network

Site Router



TeraGrid simulation

No one had used SSFNet before to simulate such 
high-speed networks.
• Goal was to load the network up and see what 

limited the performance.
⇒ We directly connected 100 hosts to each site router. 

66 clients and 34 servers.
⇒ Sessions are all FTP 1 GB file transfers.

• Window sizes and buffers  were greatly 
expanded to accommodate twice the bandwidth-
delay product
⇒ This broke the built-in tcpdump diagnostics



Queues in SSFNet

In SSFNet, queues are simulated by determining 
the existing queue delay and calculating the time 
at which the packet will be delivered.
• The input and output queues are essentially one 

and the same
• Initially the queue always fills up rapidly so that 

the RTT times always include the time to empty 
the queue buffer.



Simulation of parallel pipes

BGP gives one and only one route between two nodes. 
SSFNet was extended to allow it to use multiple paths. There 
are three possibilities:
• Picking a path at random

⇒ Out-of order packets kill throughput
• Picking the lowest queue

⇒ Attractive, and should yield best throughput
⇒ Difficult to implement due to multi-threading of SSFNet code

• Hash used to pick fixed path for each connection
⇒ Is the approach used by Juniper Networks

Utilization of parallel pipes required an extensive rewrite of 
the ip and BGP routines.



Hash algorithm

• Key is composed of the
⇒ Source and destination IP addresses
⇒ Source and destination ports
⇒ Protocol (TCP only for now)
⇒ Input interface number

• The FCS hash from RFC 1622 Appendix C is 
used

• The hash is divided modulo the number of pipes 
to select each pipe for the connection

• But, the data stream and ACK stream are treated 
as equals.



SSFNet on the supercomputers

SSFNet has been ported to the Eagle and Cheetah IBM 
supercomputers at ORNL by Dartmouth. There are 
challenges:
• When nodes run on separate computers, the LAN parts of 

the SSFNet code cannot be used to determine node 
connectivity. Instead, the DML file must be parsed on 
each node.

• Diagnostics are also limited to what can be measured on 
a single node because files are local to a node. It is very 
difficult to “follow” a packet across the network.

• The message-passing architecture suffers if network 
links have disparate delays.



0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

choice

0

6

12

0

6

12

0

6

12

C
ou

nt

Host.toHost: 1:2 Host.toHost: 1:3:3 Host.toHost: 1:4:4 Host.toHost: 2:1

Host.toHost: 2:5:5 Host.toHost: 2:6:6 Host.toHost: 2:7:7 Host.toHost: 3:1

Host.toHost: 4:1 Host.toHost: 5:2 Host.toHost: 6:2 Host.toHost: 7:2

Hash performance

Pipe utilization (75 Sessions)

• 1:2 and 2:1 are the 
cross-country pipes
• The 2:6 hash is 
the worst, and that 
is where the packet 
will be dropped
• The hash does not 
account for the 
difference between 
the large data 
packets and small 
ACK packets



Typical startup performance

20.03 20.08 20.13 20.18
Time (s)

103

104

105

106

107

108

Last Sent
Congestion Window
Bytes per Second
RexDupACKs * 1000
First UnACKed

3:375 to 4:410 This is the 40 Gbps 
result on Cheetah
View from the server:
• Exponential startup

⇒ N.B. Semi-log plot
• Gets to full 1 Gbps 

bandwidth
• A packet gets 

dropped
• Goes into congestion 

control



How to find the needle in the haystack?

• The distributed architecture made it impossible 
to follow a single packet through TeraGrid to see 
where it was being dropped.

• A Cheetah run generated over 1 GB of 
diagnostics per connection in separate files for 
sender and receiver. Router flows were much 
larger.

• To make it possible to implement diagnostics to 
follow individual packets, we ran on a single 
CPU with 2 GB of memory, and divided all 
bandwidths and buffers by a factor of 10.



Typical cross-country performance

100 101 102 103 104 105
Time(s)

100

101

102

103

104

105

106

107

Last Sent
Congestion Window
Bytes per Second
Packets
RTT (microseconds)

Server 370
Client = 553

4 Gbps TeraGrid
As seen by the server



Packet loss

On a single node we 
can follow all 
packets in a given 
TCP connection.
• The problem 

occurs at router 6
• Note that the 

overall time 
between 490 and 
620 is constant, 
but where the 
delay occurs 
changes



Enlargement of loss situation



TeraGrid is unable to recover gracefully

• The retransmitted packet gets dropped at the 
same place, and the connection never recovers.

• The drop occurs at the link with the worst hash.
• This simulation illustrated the complexity of the 

interaction of many streams of network traffic 
with each other.



Issues with multiprocessor 
supercomputers

• In a message-passing architecture, the message passing 
time is determined by the link with the shortest delay —
the client or server to its router. This dramatically 
increases the number of messages flying back and forth 
and slows the simulation.

• The connectivity of the network must be instantiated on 
each node by reading the DML file rather than a common 
shared framework.

• Diagnostics are difficult because files are node-specific.
• Should be much improved on a shared-memory vector 

architecture such as the Cray X1.



Other diversions

• One would think that the best way to select the optimum 
parallel pipe would be:
⇒ Query the length of the queue on each pipe
⇒ Put the packet on the pipe with the shortest queue

• Eventually the packets arrived out of order, even though 
the link delay on the parallel pipes was identical.

• We tried some of the techniques used by Net100 to 
eliminate out-of-order packets. We upped the number of 
duplicate ACKs from 3 to 12 before a retransmission 
occurred.
⇒ It worked for a while, but just delayed the inevitable

• The problem is that SSFNet is multithreaded, and there is 
no way to get exclusive access to a pipe, so other packets 
are put on it from other TCP streams while the queue is 
being selected.



Ideas for further work

Even the “simple” TeraGrid simulation used over 1000 
nodes. Most other simulations are usually limited to simple 
backbones and a few hosts.
• But the performance of optimized streams (e.g., Net100) 

is not independent of the other traffic on the net. The 
interplay between optimized and unoptimized streams is 
vital because fairness must be enforced among all 
streams
⇒ Vegas backs off in the presence of normal TCP

• Need for studying large scale networks that involve both 
local and wide area components. 
⇒ Simulate a real campus network as soon as layer 2 

switching is supported and determine if the performance 
bottlenecks are on the backbone or in the local campus 
network.


