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Abstract– In this paper, we design an adaptive kinematic
controller that asymptotically regulates a robot end-effector
to a desired position and orientation under visual feedback
(of points located on a fixed reference frame) from a cam-
era mounted on the end-effector. This task is accomplished
despite lack of depth measurements as well as uncertainty
in the camera intrinsic parameter matrix.

I. Introduction

During the last 5 years, 2.5D visual servo controllers
have become very popular given their amenability to con-
trol analysis as well as the robustness that these approaches
bring to robot end-effector tracking and regulation applica-
tions. Roughly speaking, 2.5D visual servoing involves ob-
taining information from the 3D task-space (either through
a given 3D model or more interestingly through a projec-
tive Euclidean reconstruction) to regulate the rotation and
depth-related error systems while simultaneously utilizing
information from the 2D image-space to regulate the pla-
nar translation related error systems. Drawing upon the
aforementioned novel idea of fusing 2D and 3D informa-
tion, various kinematic control strategies were designed by
Malis and Chaumette [1], [2], [14], and [15] for the camera-
in-hand problem. More recently, Corke and Hutchinson [5]
developed a new hybrid image-based visual servoing scheme
in order to decouple rotation and translation components
about the z-axis from the remaining degrees of freedom so
as to address the problem of desirable image-space trajec-
tories resulting in undesirable Cartesian trajectories. Most
of the above controllers conjecture that a constant, best-
guess estimate of the depth information can be utilized in
lieu of the exact value. Motivated by the desire to actively
compensate for unmeasurable depth information, Conti-
celli developed an adaptive kinematic controller in [4] to
ensure uniformly ultimately bounded set-point regulation
provided conditions on the translational velocity and the
bounds on uncertain depth parameters are satisfied. In [7],
Fang et al. recently developed a 2.5D visual servo controller
to asymptotically regulate a manipulator end-effector by
developing an adaptive update law that actively compen-
sates for an unknown depth parameter. In [8], Fang et
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ment Sciences Program (EMSP) project ID No. 82797 at ORNL,
a subcontract to ORNL by the Florida Department of Citrus, and
by U.S. NSF Grant DMI-9457967, ONR Grant N00014-99-1-0589, a
DOC Grant, and an ARO Automotive Center Grant.

al. also developed a camera-in-hand regulation controller
that incorporated a nonlinear robust control structure to
compensate for uncertainty in the extrinsic calibration pa-
rameters.

Most extant monocular 2.5D visual servoing controllers
rely upon knowledge of the intrinsic camera calibration pa-
rameters. In a few previous results (e.g., see [8], [15]),
nominal, best-guess parameters are employed. To further
engage and understand robustness issues, this paper ad-
dresses the twin problems of uncertainty in the intrinsic
camera calibration parameters and lack of depth measure-
ments. Specifically, by exploiting the triangular structure
of the calibration matrix, we design an adaptive control
strategy via a Lyapunov-based approach. The control
problem is challenging because the unknown camera cal-
ibration matrix forces us to work with the pixel homog-
raphy matrix instead of the more facile Euclidean coor-
dinates. The problem is further complicated by the fact
that the projected pixel homography has more unknowns
than independent equations; hence, it is impossible to sep-
arate the rotational and translational degrees of freedom.
Fortunately, the use of the plane at infinity (i.e., the van-
ishing points) provides additional information that can be
used to surmount this issue. Given this isolation of the
rotation-like information that is provided by the vanishing
points, it becomes possible to embed the intrinsic parame-
ter uncertainty in the kinematic model to facilitate adap-
tive control techniques for a special class of multiple-input,
multiple-output systems. To the best of our knowledge,
this is the first result that regulates the robot end-effector
to a desired position/orientation through visual servoing
by actively compensating for the lack of depth measure-
ments and uncertainty in the camera intrinsic calibration
matrix with regard to the 6 degrees-of-freedom regulation
problem.

This paper is organized in the following manner. In Sec-
tion II, a geometric relationship is expressed between the
images of interest in terms of the orientation and position
of the camera located on the robot end-effector. In Section
III, we describe extraction procedures for various signals
embedded in the pixel information that facilitate the con-
trol design. In Section IV, the control objective is devel-
oped along with the open-loop error dynamics. In Section
V, a kinematic controller is developed via a Lyapunov based
approach. Concluding remarks are given in Section VI.



II. Geometric Model

Consider a reference plane π located on an object that
has four target points1 (no three of which are collinear)
that are denoted by Oi ∀i = 1, 2, 3, 4. Consider two or-
thogonal coordinate systems, denoted by F and F∗, where
F is attached to a camera that is held by the robot end-
effector, and F∗ is a fixed coordinate system that represents
the constant, desired camera position and orientation. The
Euclidean coordinates of the target points on π can be ex-
pressed in terms of F and F∗, respectively, as follows

m̄i(t) ,
£
xi(t) yi(t) zi(t)

¤T
m̄∗i ,

£
x∗i y∗i z∗i

¤T (1)

under the standard assumption that the distances from the
origin of the respective coordinate frames to π along the
focal axis remain positive (i.e., zi (t), z∗i ≥ ε > 0 where ε is
an arbitrarily small positive constant). The rotation from
F to F∗ is denoted by R (t) ∈ SO(3), and the translation
from F to F∗ is denoted by xf (t) ∈ <3 where xf (t) is
expressed in F . From the geometry between the coordinate
frames depicted in Fig. 1, m̄∗i can be related to m̄i(t) as
follows

m̄i = Rm̄
∗
i + xf . (2)

Also, from the geometry given in Fig. 1, the distance d∗ ∈
< from F∗ to π along the unit normal is given by

d∗ = n∗T m̄∗i (3)

where n∗ ∈ <3 denotes the constant unit normal to π ex-
pressed in F∗. From (3), the relationships in (2) can be
expressed as follows

m̄i =
¡
R+ xhn

∗T ¢ m̄∗i (4)

where xh (t) ∈ <3 denotes a scaled translation vector that
is defined as follows

xh =
xf
d∗
. (5)
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Fig. 1. Motion and structure parameters.

1It should be noted that if four coplanar target points are not avail-
able then the subsequent development can exploit the classic eight-
points algorithm [14] with no four of the eight target points being
coplanar.

III. From Geometry to Control

The relationship given in (4) is a conduit to obtaining the
translational and rotational error between F and F∗. How-
ever, the Euclidean coordinates of the points m̄i (t) and m̄∗i
cannot be directly measured; therefore, we must utilize the
pixel information gathered by the camera to develop a rela-
tionship between the current and desired pixel coordinates
of the points Oi in the reference plane π. If the intrinsic
camera calibration parameters were known, standard re-
construction schemes could then be applied to obtain mea-
surable translation and rotation error signals from which
point a control algorithm could be developed to regulate
F to F∗. However, we are interested in developing a con-
trol strategy with the additional constraint of uncertainty
with regard to the intrinsic camera calibration parameters.
In light of this uncertainty, the best that we can hope to
do is to obtain measurable signals that mimic the rotation
and translation between F and F∗ from a decomposition of
the pixel homography, and thereby, facilitate the design of
kinematic control inputs that provide for asymptotic reg-
ulation of the robot end-effector. This section aims to set
up the requisite signals that the subsequent control design
will utilize.

A. Euclidean and Projective Homographies

We begin by defining the normalized Euclidean coordi-
nates mi (t), m∗i ∈ <3 of Oi expressed in terms of F and
F∗ , respectively, as follows

mi , m̄i

zi
=
h xi
zi

yi
zi

1
iT

(6)

m∗i , m̄∗i
z∗i

=

·
x∗i
z∗i

y∗i
z∗i

1

¸T
. (7)

The rotation and translation between the coordinate sys-
tems can now be related in terms of the normalized coor-
dinates as follows

mi =
z∗i
zi|{z}

¡
R+ xhn

∗T ¢| {z }m∗i
αi H

(8)

where αi (t) ∈ < denotes the depth ratios, and H (t) ∈
<3×3 denotes a Euclidean homography [10].
Each target point Oi will have a projected pixel coordi-

nate expressed in terms of F (denoted by ui (t), vi (t) ∈ <)
and F∗ (denoted by u∗i , v∗i ∈ <) that are defined as ele-
ments of pi (t) (actual time-varying image points) and p∗i
(constant reference image points), respectively, as follows

pi =
£
ui vi 1

¤T
p∗i =

£
u∗i v∗i 1

¤T . (9)

To calculate the Euclidean homography given in (8) from
pixel information, the projected 2D pixel coordinates of the
target points are related to mi (t) and m∗i by the following
pin-hole lens model

pi = Ami p∗i = Am
∗
i (10)



where A ∈ <3×3 is an unknown, constant, and invertible in-
trinsic camera calibration matrix that is defined as follows
[14]

A =

 a1 a2 a4
0 a3 a5
0 0 1

 (11)

where ai ∀i = 1, 2, ..., 5 are scalar constants, and a1, a3 > 0.
After substituting (8) into (10), the following relationship
can be developed

pi = αi
¡
AHA−1

¢| {z } p∗i
G

(12)

where G (t) = [gij(t)] ∀i, j = 1, 2, 3 ∈ <3×3 denotes a
projective homography [10].

B. Projective Homography Decomposition

From (8) and (12), we can rewrite G (t) as follows

G = R̄+ x̄hn̄
∗T (13)

where the signals R̄ (t) ∈ <3×3 and x̄h (t) , n̄∗ ∈ <3 are
defined as follows

R̄ = ARA−1 x̄h = Axh n̄∗ = A−Tn∗ . (14)

By virtue of the definitions of (13) and (14), we can now
write (12) as follows

pi = αi
¡
R̄+ x̄hn̄

∗T ¢ p∗i = αig33Gnp
∗
i (15)

where Gn (t) = G (t) /g33 (t) (where g33 (t) 6= 0 ∀ t by
(9) and (15)) is a normalized version of G (t). From the
relationship in (15), a set of 12 independent linear equa-
tions given by the 4 image point pairs (pi (t) , p∗i ) (3 equa-
tions for each image pair) can be used to obtain the prod-
uct αi (t) g33 (t) and the matrix Gn (t). Since the intrinsic
camera calibration matrix A is unknown, standard tech-
niques (e.g., [9], [19]) that rely on knowledge of the Euclid-
ean homography H (t) cannot be applied to obtain the
translational and rotational mismatch between F and F∗.
Rather, we employ an algorithm based on vanishing points
to obtain R̄ (t) (details available upon request). Addition-
ally, the subsequent development requires knowledge of the
depth ratios αi (t) ∀i = 1, 2, 3, 4 for calculation of the trans-
lation control of the end-effector. By utilizing the relation-
ship in (15), a nonlinear system of equations can be solved
to obtain αi (t). Details are available upon request.

IV. Control Objective and Open-loop Error
System

The objective of this paper is to develop a visual servo
controller in order to ensure that the robot end-effector is in
its desired final position and orientation (i.e., F is regulated
to F∗). There are 6 degrees of freedom (3 translational
and 3 rotational) between F and F∗; hence, our control
objective is satisfied if we obtain the following: R (t)→ I3
(where the notation Ii denotes an i×i identity matrix) and
xf (t) → 0. From (4) and (5), this amounts to m̄i(t) →

m̄∗i . The rotational control objective is complicated by the
fact that R (t) is not a measurable signal; however, the
surrogate signal R̄ (t) of (14) can be utilized along with
an adaptive algorithm to compensate for uncertainty in
the calibration matrix A. From the second relationship of
(14) and the full-rank nature of A, the translational con-
trol objective can be achieved by regulating x̄h (t) to zero.
However, x̄h (t) is only available up to a scale factor that
has an indeterminate sign (details available upon request).
Moreover, it is desirable from a robustness point of view to
servo on actual pixel information (in lieu of reconstructed
information) to increase the likelihood that the object will
stay in the field of view of the camera. Therefore, we state
the translational control objective as2: p1 (t) → p∗1 and
α1 (t)→ 1. From the definitions of (8) and (10), we obtain
m̄1 (t)→ m̄∗1. From the definition of (4), (5), and the fact
that the control will ensure that R (t) → I3, we can see
that xf (t)→ 0 This chain of events ensures that the con-
trol objective is achieved (i.e., m̄i(t)→ m̄∗i ∀i = 1, 2, 3, 4),
and hence, F is regulated to F∗. In light of the discussion
above, we proceed to define our rotational and translation
error signals whence we derive the respective open-loop er-
ror systems.

A. Rotation Error System

Based on an angle axis parameterization of the rotation
matrix R (t), we define a rotation error-like signal eω (t) ∈
<3 as follows [15]

eω = uθ (16)

where u (t) ∈ <3 represents the unit axis of rotation (i.e.,
the eigenvector corresponding to the eigenvalue equal to
one), and θ (t) denotes the rotation angle about that axis.
As stated in [18], the angle axis representation of (16) is not
unique, in the sense that a rotation of −θ (t) about −u(t) is
equal to a rotation of θ (t) about u(t). A particular solution
for θ (t) and u(t) can be determined as follows [18]

θp = cos
−1
µ
1

2
(tr (R)− 1)

¶
[up]× =

R−RT
2 sin(θp)

(17)

where the notation tr (·) denotes the trace of a matrix, and
[·]× denotes the following skew-symmetric matrix

[ζ]× ,

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 ∀ζ =
 ζ1

ζ2
ζ3

 . (18)

From (17), it is clear that

0 ≤ θp (t) ≤ π. (19)

The constraint in (19) is consistent with the computa-
tion of [u (t)]× in (17) since a clockwise rotation (i.e.,
−π ≤ θ (t) ≤ 0) is equivalent to a counterclockwise rota-
tion (i.e., 0 ≤ θ (t) ≤ π) with the axis of rotation reversed.
2Any point Oi on π can be utilized in the subsequent development;

however, to reduce the notational complexity, we have elected to select
the image point O1, and hence, the subscript 1 is utilized in lieu of i
in the subsequent development of the translational controller.



Based on (17) and the functional structure of the object
kinematics, the particular solutions θp (t) and up(t) can be
used in lieu of θ(t) and u(t) without loss of generality and
without confining θ (t) to a smaller region. Since, we do
not distinguish between rotations that are off by multiples
of 2π, all rotational possibilities are considered via the pa-
rameterization of (16) along with the computation of (17).
Based on the previous definitions, we can now develop

the open-loop rotation error system. Since R (t) is unmea-
surable and R̄ (t) can be calculated via a vanishing point
algorithm (details available upon request), it is desirable
to relate the parameterization defined in (16) to a set of
measurable signals. Based on (14), we know that R̄ (t) is
similar to R (t), and hence, R (t) and R̄ (t) have the same
eigenvalues. The vector ū (t) = [ū1 (t) , ū2 (t) , ū3 (t)]

T is
the computable eigenvector of R̄ (t) corresponding to the
eigenvalue equal to one and is related to the unmeasurable
u (t) as follows

ū = Au. (20)

To facilitate further development, we define an auxiliary
variable θ̄ (t) as follows

θ̄ = cos−1
µ
1

2

¡
tr
¡
R̄
¢− 1¢¶ . (21)

Based on the definition of R̄ (t) in (14) and the properties
of tr (·), it is easy to see that tr ¡R̄¢ = tr (R); hence, we
can see from (17) and (21) that θ̄ (t) = θ (t) . Thus, ū (t)
and θ̄ (t) are measurable signals that we have now related
to u (t) and θ (t).
The open-loop error dynamics for eω(t) can be expressed

as follows (details available upon request)

ėω = −Lωωc (22)

where ωc (t) = [ωc1 (t) ,ωc2 (t) ,ωc3 (t)]
T denotes the rota-

tional velocity of the camera expressed in the coordinates
of F , Lω (t) ∈ <3×3 is defined as

Lω = I3 − θ

2
[u]× +

1− sinc (θ)

sinc2
µ
θ

2

¶
 [u]2× , (23)

and u (t) , θ (t) were introduced in (17).

B. Translation Error System

To quantify the translation mismatch between the actual
and desired end-effector position, we define the translation
error ev (t) = [ev1 (t) , ev2 (t) , ev3 (t)]T as follows

ev = pe − p∗e (24)

where pe (t) , p∗e ∈ <3 denote the extended image coordi-
nates [15] of an image point on π in terms of F and F∗,
respectively, and are defined as follows

pe =
£
u1 v1 ln (z1)

¤T
p∗e =

£
u∗1 v∗1 ln (z∗1)

¤T
(25)

where ln (·) denotes the natural logarithm. The signals
u1 (t) , v1 (t) , u

∗
1, and v

∗
1 can be measured from the two im-

ages directly. By exploiting properties of the ln(·), the
third element of ev(t) can be expressed in terms of α1(t).
Since α1(t) can be determined, ev(t) can be calculated.
As stated earlier, the depth ratio α1 (t) can be calculated;
hence, ev (t) is measurable.
We begin by observing that the extended image coordi-

nates pe (t) of (25) can be written as follows

pe =

 a1 a2 0
0 a3 0
0 0 1



x1
z1y1
z1
ln (z1)

+
 a4
a5
0

 (26)

where (6) and (9)-(11) were utilized. After taking the time
derivative of (24) and utilizing the relationship in (26), we
obtain

ėv =
1

z1
Ae

.
m̄1 (27)

where Ae (t) ∈ <3×3 is a full-rank matrix defined as follows

Ae =

 a1 a2 a4 − u1
0 a3 a5 − v1
0 0 1

 . (28)

After taking the time derivative of (2),
.
m̄1(t) can be ob-

tained as follows [15]
.
m̄1 = −vc + [m̄1]× ωc (29)

where vc (t) = [vc1 (t) , vc2 (t) , vc3 (t)]
T denotes the transla-

tional velocity of the camera expressed in the coordinates
of F , and we have utilized the fact that [ωc]× = −ṘRT .
After substituting (29) into (27), we obtain

ėv = − 1
z1
Aevc + Ȳ (ωc, u1, v1)φ̄ (30)

where Ȳ (·) φ̄ ∈ <3 is a linear parameterization that is de-
fined as follows

Ȳ (·) φ̄ = Ae [m1]× ωc (31)

where φ̄ ∈ <m is the unknown constant vector of camera
calibration parameters, and Ȳ (·) ∈ <3×m is a measurable
regression matrix. Based on (28) and the definition of αi (t)
in (8), the open-loop error dynamics for ev (t) are obtained
by rewriting (30) in the following manner

z∗1
a1
ėv1 = Y1 (vc2, vc3,ωc, u1, v1)φ1 − α1vc1

z∗1
a3
ėv2 = Y2 (vc3,ωc, u1, v1)φ2 − α1vc2

z∗1 ėv3 = Y3 (ωc, u1, v1)φ3 − α1vc3

(32)

where Yi (·)φi ∀i = 1, 2, 3 are linear parameterizations de-
fined as follows

Y1φ1 =
z∗1
a1

£
Ȳ φ̄
¤
1
− α1

a2
a1
vc2 +

(u1 − a4)
a1

α1vc3

Y2φ2 =
z∗1
a3

£
Ȳ φ̄
¤
2
+
(v1 − a5)
a3

α1vc3

Y3φ3 = z
∗
1

£
Ȳ φ̄
¤
3

(33)



where Yi (·) ∈ <1×qi is a measurable regression matrix,
φi ∈ <qi are unknown constant vectors, and

£
Ȳ φ̄
¤
i
denotes

the ith element of the vector Ȳ (·) φ̄ of (31).
V. Control Development

A. Control Design

Before we present our camera control algorithm, a few
definitions need to be introduced. We define the unknown
constants η1, η2, η3 ∈ < as follows

η1 =
b2
b3

η2 = b4 η3 = b5 (34)

where bi ∈ < ∀i = 1, 2, ..., 5 are unknown constants and are
defined to be elements of A−T in the following sense

A−T =

 b1 0 0
b2 b3 0
b4 b5 1

 . (35)

Consistent with the definition of A in (11) and the strict
positiveness of a1 and a3 (see (11)), the following relation-
ships hold true for each bi

b1 =
1

a1
> 0 b2 = − a2

a1a3
b3 =

1

a3
> 0

b4 =
a2a5 − a3a4

a1a3
b5 = −a5

a3
.

(36)

Based on the structure of the open-loop error system of
(22), the constraints on the availability of measurable sig-
nals, and the subsequent stability analysis, the camera an-
gular velocity control input ωc (t) is designed as follows

ωc1 = γ1θ̄ ū1 (37)

ωc2 = γ2θ̄ ū2 − η̂1ωc1

ωc3 = γ3θ̄ ū3 − η̂2ωc1 − η̂3ωc2

where θ̄ (t), ū (t) have been previously defined in (20) and
(21), respectively. In (37), γi ∈ < ∀i = 1, 2, 3 denote posi-
tive control gains, and η̂i (t) ∈ < ∀i = 1, 2, 3 denotes adap-
tive parameter estimates that are dynamically generated
as follows
.

η̂1 = −γ4θ̄ū2ωc1
.

η̂2 = −γ5θ̄ū3ωc1
.

η̂3 = −γ6θ̄ū3ωc2
(38)

where γi ∈ < ∀i = 4, 5, 6 denote positive update gains.
Motivated by the open-loop error dynamics for ev (t) of

(32) and the subsequent stability analysis, the translational
control vc (t) is designed as follows

vc1 =
1

α1

³
γ7ev1 + Y1φ̂1

´
(39)

vc2 =
1

α1

³
γ8ev2 + Y2φ̂2

´
vc3 =

1

α1

³
γ9ev3 + Y3φ̂3

´
where γi ∈ < ∀i = 7, 8, 9 denote positive control gains.
In (39), φ̂i (t) ∈ <qi ∀i = 1, 2, 3 denote adaptive parame-
ter estimate vectors that are dynamically generated by the

following update laws

.

φ̂1 = Γ1Y
T
1 ev1

.

φ̂2 = Γ2Y
T
2 ev2

.

φ̂3 = Γ3Y
T
3 ev3

(40)
where Γi ∈ <qi×qi ∀i = 1, 2, 3 are positive diagonal gain
matrices.

B. Stability Analysis

Theorem 1: The adaptive update laws defined in (38)
and (40) along with the control inputs designed in (37)
and (39) ensure that eω (t) and ev (t) are asymptotically
driven to zero in the sense that

lim
t→∞ keω(t)k , kev(t)k = 0 . (41)

Proof: To analyze the stability of the rotational con-
troller, we begin by defining a non-negative function de-
noted by V1(t) ∈ < as follows

V1 =
1

2
eTωeω. (42)

After taking the time derivative of (42), we obtain

V̇1 = −b1θ̄ ū1ωc1 − b3θ̄ ū2 (ωc2 + η1ωc1) (43)

−θ̄ ū3 (ωc3 + η2ωc1 + η3ωc2)

where we have utilized the relationships of (16), (20), (34),
(35), and the fact that eTωLω = eTω . The motivation for
the rotational control strategy of (37) is now immediately
obvious. After substituting (37) into (43), we obtain

V̇1 = −b1γ1θ̄2 ū21 − b3γ2θ̄2 ū22 − γ3θ̄
2
ū23 (44)

−b3θ̄ ū2ωc1η̃1 − θ̄ ū3ωc1η̃2 − θ̄ ū3ωc2η̃3

where the auxiliary variables η̃i (t) ∈ < ∀i = 1, 2, 3 are
defined as

η̃i = ηi − η̂i. (45)

In order to take care of the last three sign indefinite terms in
(44), we augment V1 (t) by defining a non-negative function
denoted by Vω(t) ∈ < as follows

Vω = V1 +
b3
2γ4

η̃21 +
1

2γ5
η̃22 +

1

2γ6
η̃23. (46)

After taking the time derivative of (46) and utilizing (44)
and the adaptive update laws of (38), we obtain

V̇ω = −b1γ1θ̄2 ū21−b3γ2θ̄2 ū22−γ3θ̄2 ū23 6 −λ1θ2ūT ū (47)

where we have utilized the fact that θ̄ (t) = θ (t), and the
positive constant λ1 is defined as

λ1 = min {b1γ1, b3γ2, γ3} . (48)

Given the relationship in (20) and the fact that ATA is
positive definite, the following inequality can be developed

ūT ū > λmin
¡
ATA

¢
uTu (49)



where λmin (·) ∈ < denotes the minimum eigenvalue of a
matrix, and λmin

¡
ATA

¢
is strictly positive. Based on (49),

(47) can be rewritten as

V̇ω 6 −λ2eTωeω (50)

where the strictly positive constant λ2 is defined as

λ2 = λ1λmin
¡
ATA

¢
. (51)

From (45), (46), and (50), we can now show that eω (t) ∈
L2 ∩ L∞ and that η̃i, η̂i (t) ∈ L∞ ∀i = 1, 2, 3. From a se-
quential inspection of the relationships of (37) and (38), we
can also show that ωc (t),

.

η̂i (t) ∈ L∞ ∀i = 1, 2, 3. Since
ku (t)k = 1, then θ (t) ∈ L2 ∩ L∞ from our preceding as-
sertions; hence, Lω (t) ∈ L∞ from (23). From (22), we can
state that ėω (t) ∈ L∞. Hence, we can apply Barbalat’s
Lemma [17] to state that lim

t→∞ eω (t) , θ (t) = 0.
In order to establish the asymptotic regulation of the

camera translational error, we define a non-negative func-
tion denoted by Vv(t) ∈ < as follows

Vv =
1

2

µ
z∗1
a1

¶
e2v1 +

1

2

µ
z∗1
a3

¶
e2v2 +

1

2
z∗1e

2
v3 (52)

+
1

2
φ̃
T

1 Γ
−1
1 φ̃1 +

1

2
φ̃
T

2 Γ
−1
2 φ̃2 +

1

2
φ̃
T

3 Γ
−1
3 φ̃3

where the auxiliary variables φ̃i (t) ∈ < ∀i = 1, 2, 3 are
defined as

φ̃i = φi − φ̂i. (53)

After taking the time derivative of (52) and utilizing (32),
(39), and (40), the following expression can be obtained

V̇v = −γ7e2v1 − γ8e
2
v2 − γ9e

2
v3 6 0. (54)

Based on (52), (53), and (54), it is easy to see that ev (t) ∈
L∞ ∩ L2 and φ̃i (t) , φ̂i (t) ∈ L∞. From the definitions of
(24) and (25), u1 (t) , v1 (t) , z1 (t) ∈ L∞. From the positive-
ness constraint placed on z∗i , we can see that α

−1
1 (t) ∈ L∞.

From (39), we can see that vc (t) ∈ L∞. Given the preced-
ing assertions, we can use (32) to show that ėv (t) ∈ L∞.
Since ev (t) ∈ L∞∩L2 and ėv (t) ∈ L∞, Barbalat’s Lemma
[17] can be applied to state that lim

t→∞ ev (t) = 0. Hence, we

have proved the result of (41). ¤

VI. Conclusions

In this paper, a kinematic controller is developed that
asymptotically forces a robot end-effector to its desired
position and orientation while utilizing a camera fixed on
the robot end-effector for visual feedback. A homography-
based algorithm that utilizes feature point recognition on
a target of interest as well as points on the plane at infinity
are utilized in conjunction with an adaptive camera con-
troller in order to obtain the result. Since the controller
is designed to be differentiable, robot dynamic effects can
easily be incorporated via backstepping design methods [7].
Future research will target the development of adaptive vi-
sual servo controllers for the fixed camera configuration.
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