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The AHTR Was Conceived During the 
GenIV Roadmap Activity

• Concept developers
− Charles Forsberg (ORNL)
− Per Peterson (U. of California-Berkeley)
− Paul Pickard (SNL)

• AHTR incorporates 5 older technologies
− Molten salt coolant (1960s)
− Gas-cooled reactor coated-particle fuel (1970s)
− S-PRISM/MHTGR passive safety (1980s)
− Helium Brayton power cycle (1990s)
− Corrosion control in clean salts (1960s forward)
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AHTR Overview

Large, Passively Safe, High-Temperature Reactor 
for Electricity and Hydrogen Production 

Large Reactor (>2000 MW(t)) to Improve Economics
Safety Basis of a Modular High-Temperature Reactor

High-Temperature Reactor (80% Commonality with Helium 
Gas-Cooled Reactors)
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Comparison of Different 
High-Temperature Reactors
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The Advanced High Temperature Reactor
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The AHTR Uses Coated-Particle Graphite Fuels
(Similar to Helium-Cooled Reactors; Prismatic or Pebble-Bed Fuel)

ORNL DWG 2001-45
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AHTR Molten Salt Coolants Have Several 
Advantages: Good Heat Transfer, Low 

Pressure, and Transparent
Technology originally developed for Aircraft Nuclear Propulsion Program and Molten 

Salt Reactor Program (left): Potential Uses Include AHTR, Heat Transfer Loop 
Between Reactor and Hydrogen Production Plant, and Fusion Energy Plants)
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The AHTR Is NOT
a Molten Salt Reactor (MSR)

• MSR (Left)
− Fuel dissolved in the 

molten salt
− Molten-salt reactor 

experiment (1965-1969)
• AHTR

− Solid fuel
− Clean molten-salt coolant
− Uses MSR experience

• Secondary MSR heat-
transfer system used 
clean molten salts

• MSR secondary 
system: green piping 
(left)
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The AHTR Operates at Atmospheric Pressure With Small 
Temperature Drops Across the Reactor Core (Dark Blue)

(Light Blue: Can Design AHTR For Different Peak Temperatures)
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Metal Alloys In the 1970s Were Developed 
For Molten-Salt Industrial Service To 750ºC

• AHTR uses clean salts 
(Simpler chemistry)

• Metals are non-
reactive (noble) in 
contact with clean 
salts

• ORNL LDRD test loop 
evaluating corrosion 
resistance to higher 
temperatures (Left: 
completed first 2000 
hour run)
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• Transportable 
vessel
− Same size as S-

PRISM 1000 MW(t) 
vessel

− Similar size to 600 
MW(t) GT-MHR 
reactor vessel 

• Down-flow molten 
salt

• MHTGR annular 
core

Conceptual 2400 MW(t) AHTR Vessel

03-155
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Decay-Heat Safety Strategy:
Decay Heat to the Reactor Vessel 

Wall With Silo Cooling 

Same approach as Modular High-Temperature 
Gas-Cooled Reactors and General Electric 

Sodium-Cooled Modular S-PRISM

Molten Salt Allows Larger Reactor Sizes
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In an Emergency, Decay Heat is Transferred to the 
Reactor Vessel and Then to the Environment

(Example: GE-PRISM approach; Other options: GT-MHR and Pebble Bed)

Control
Rods
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Similar to GE S-PRISM (LMR)

Argon Gap
- Heat Transfer ~T
- Thermal Switch Mechanism

4

Heat Rejection: Temperature Dependent
- LMR: 500-550 C [~1000 Mw(t)]o

- AHTR: 750-1000 C [>2000 Mw(t)]o

High Heat Capacity
- Molten Salt and Graphite
- High Temperature (Limited-Insulation
  of Vessel from Hot Salt)
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MHTGR)
Reactor
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Guard
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System Characteristics
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Evolution of Passive Decay Heat Removal Systems in 
Similar Size Vessels Enables Design of Larger Reactors 

03-149R

MHTGR
Helium

600 MW(t)
Conduction

S-Prism
Sodium

1000 MW(t)
Sodium Boiling Point

AHTR
Molten Salt

>2000 MW(t)
Vessel

Reactor
Coolant
Power

Limitation

Passively 
Cooled Wall

(All Reactors)

Uniform 
Vessel 

Temperature 
(Liquid)

Higher Vessel 
Temperature 

(Low Pressure)

Thick Vessel 
Wall

Thin Vessel 
Wall

Graphite Partly 
Decouples Salt 

and Vessel 
Wall



15

AHTR Delivers High-
Temperature Heat With Lower 
Reactor Peak Temperatures

Peak Reactor Temperatures Are 
Lower In Liquid-Cooled Reactors 

Than Gas-Cooled Reactors
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Liquid-Coolants Minimize Peak Coolant Temperatures 
for a Given Temperature of Delivered Heat
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Molten Salts Preferred For Transfer of Heat From Reactor 
to Physically-Separated Hydrogen Production Facility

(1970s German Studies)
Nuclear Safety

by Isolation
Hydrogen Safety by Dilution

Loop Heat Transfer Comparison 
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Economics

Larger Reactors Have the Potential for  
Lower Capital and Operating Costs
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Equipment Comparisons Suggest AHTR Capital 
Cost Per MW(t) Is Less Than a Modular Reactor

03-159
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Low-Pressure Vessel For 
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Simple scaling laws estimate AHTR per kilowatt capital costs at 
60% of a Modular High Temperature Gas-Cooled Reactor

Simple scaling laws estimate AHTR per kilowatt capital costs at 
60% of a Modular High Temperature Gas-Cooled Reactor
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Potential for Better Economics Than 
Light-Water Reactors But No Definitive 

Economic Comparison

• LWR technology is significantly different; thus, 
simple scaling comparisons can not be made

• Potential economic advantages of AHTR
− Higher thermal-electric efficiency (50% versus 33%)

• Fuel savings
• Smaller secondary systems

− Brayton helium cycle (Smaller than steam turbine)
− Low pressure containment
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Technical Status

Shares Many R&D Issues with VHTR
Some Unique Issues
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Evolution of AHTR and Other Technologies
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The R&D Requirements for the Molten-Salt-
Cooled AHTR and Helium-Cooled VHTR 

Have Much In Common

03-152

AHTR VHTR

COMMON R&D
• Nuclear Fuels
• Materials
• Electricity Production

− Brayton Helium Cycle
• Hydrogen Production

− Reactor to Hydrogen
Heat Transfer
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Coolant
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Unique AHTR R&D Issues
(Excluding Those In Common with MHTGRs)

• Reactor
− Materials

• Most issues identical to molten-salt heat-
transfer loop between reactor and hydrogen 
plant

• Some unique issues
− Core design
− Choice of salt (Neutronics, melting point, etc)

• Systems
− Decay Heat Cooling System

• Defines maximum plant size
− System Tradeoffs
− Economics
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Other Considerations

• Potential international support
− French interest in:

• Molten salt reactors
• Hydrogen production

− National Assembly Report
• Connections to other programs

− Hydrogen from nuclear energy (heat transfer 
loop for hydrogen plant isolation)

− Fusion (molten-salt blanket and materials)
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Conclusions
• AHTR goals

− Improve economics with larger high-temperature reactor
− Same passive safety basis as modular reactors
− Commonality with helium-cooled high-temperature reactors

• Technology foundation based on
− Modular high-temperature gas-cooled reactors
− Molten salt reactors

• New reactor concept 
− Shares many R&D issues with VHTR
− Several AHTR specific issues

• Strengthens basis for high-temperature reactors
• Several potential partners (France, Fusion)
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BACKUP
SLIDES
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Molten Salt Options
• Choice of molten fluoride salt is dependent upon 

multiple factors
− Neutronics
− Economics
− Properties (melting point, heat transfer, corrosion 

potential, solubility, volatility)
• Leading candidates were investigated during the 

Aircraft Nuclear Propulsion Program
− Simple alkali halides: FLiNaK (FLiNaRb)
− Zr-containing salts: ARE salt NaF-ZrF4 (and ternary 

systems)
− Be-containing salts: MSRE coolant salt-7Li2BeF4
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AHTR Operates at Atmospheric Pressure
(Large Margins to the Boiling Point and Boil-Off Before Fuel Failure)

03-037R
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Molten Fluoride Salts Are Compatible 
With Graphite-Based Fuels

02-164

• Molten Salt Reactor 
Experiment showed that 
salt and graphite are 
compatible

• Industrial experience
− Hall aluminum 

production since 1890s
− Graphite baths
− AlF3/NaF3 salt
− 1000°C
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The Liquid-Cooled AHTR Reduces Reactor & Fuel 
Temperatures Compared to Gas-Cooled Reactors
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Liquid-Coolants Minimize Peak Coolant Temperatures 
for a Given Temperature of Delivered Heat
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Higher Temperatures of the AHTR Allow 
Much Larger Reactors with the Same Size Systems

(S-PRISM and AHTR with Identical 9-m Vessels)
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Safety Strategy for 
Beyond Design-Basis Accidents

Goal: Walk-Away Safety in a Large Reactor
(Same as the Modular Gas-Cooled Reactor) 
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Beyond-Design-Basis Accident Avoids Radionuclide 
Release By Decay Heat Conduction To Ground
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Liquid-Cooled AHTR Uses a Multi-Reheat Brayton 
Cycle for High-Efficiency Electricity Production

(AHTR Efficiency at 750°C Equals Gas-Cooled Reactor at 850°C)
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Simple Scaling Laws Estimate AHTR Per 
Kilowatt Capital Costs at 60% of MHTGR

• Assumptions
− Size: 2000 MW(t) AHTR and 600 MW(t) MHTGR
− Traditional scaling factor: 0.7 

• Two Factors
− Size difference
− Same coolant exit temperature but more heat 

delivered at higher temperature with AHTR
• AHTR: 56%
• MHTGR: 48%
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Advanced High-Temperature Reactor

03-154
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Hastelloy N Thermal 
Convection Loop

• LDRD Activity
• Hastelloy N specimens 

− 32 in hot section
− 32 in cold section

• 4 kg FLiNaK salt
• Thermal gradient

− 800ºC — 700ºC
• Initial test duration

− ~2000 h 


