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Abstract

Typical visual servoing control objectives are formulated
by the desire to position/orient a camera based on a ref-
erence image obtained by a priori positioning the camera
in the desired location. In this paper, projective geomet-
ric techniques are used to formulate a visual servo con-
trol problem based on a cooperative camera scheme that
provides an alternative to the typical “teach by showing”
methodology. Specifically, by using a second camera with
zoom capabilities, the proposed “teach by zooming” alter-
native approach eliminates the need for the camera to be
a priori positioned in the desired location. To achieve this
result, development is provided that illustrates how cam-
eras with different intrinsic parameters can be used (i.e.,
camera independent). Control objectives are developed for
cases when the intrinsic camera calibration matrices for the
camera-in-hand and fixed camera are both known or both
unknown.

I. Introduction

With recent advances in camera technology, computer
vision, and control theory, visual servo control systems
exhibit significant promise to enable autonomous systems
with the ability to operate in unstructured environments.
Although a vision system can provide a unique sense of
perception, several technical issues have impacted the de-
sign of robust visual servo controllers. One of these is-
sues includes the camera configuration (pixel resolution
versus field-of-view). For example, for vision systems that
utilize a camera in a fixed configuration (i.e., the eye-to-
hand configuration), the camera is typically mounted at a
large enough distance to ensure that the desired target ob-
jects will remain in the camera’s view. Unfortunately, by
mounting the camera in this configuration the task-space
area that corresponds to a pixel in the image-space can be
quite large, resulting in low resolution and noisy position
measurements. Moreover, many applications are ill-suited
for the fixed camera configuration. For example, a robot

*This research was supported in part by a subcontract to Oak Ridge
National Laboratory by the Florida Department of Citrus through the
University of Florida, and by the U.S. DOE Environmental Manage-
ment Sciences Program (EMSP) project ID No. 82797 sponsored by
the DOE Office of Biological and Environmental Research (OBER)
of the DOE Office of Science (SC).

may be required to position the camera for close-up tasks
(i.e., the camera-in-hand configuration). For the camera-
in-hand configuration, the camera is naturally close to the
workspace, providing for higher resolution measurements
due to the fact that each pixel represents a smaller task-
space area; however, the field-of-view of the camera is sig-
nificantly reduced (i.e., an object may be located in the
workspace but be out of the camera’s view).
Several results have been recently developed to address

the camera configuration issues by utilizing a cooperative
camera strategy. The advantages of the cooperative camera
configuration are that the fixed camera can be mounted so
that the complete workspace is visible and the camera-in-
hand provides a high resolution, close-up view of an object
(e.g., facilitating the potential for more precise motion for
robotic applications). Specifically, [7] made the first steps
towards cooperatively utilizing global and local informa-
tion obtained from a fixed camera and a camera-in-hand,
respectively; unfortunately, to prove the stability results,
the translation and rotation tasks of the controller were
treated separately (i.e., the coupling terms were ignored)
and the cameras were considered to be calibrated. In [2]
and [3], a new cooperative visual servoing approach was
developed and experimentally demonstrated to use infor-
mation from both an uncalibrated fixed camera and an
uncalibrated camera-in-hand to enable robust tracking by
the camera-in-hand of an object moving in the task-space
with an unknown trajectory. Unfortunately, a crucial as-
sumption for this approach is that the camera and the ob-
ject motion be constrained to a plane so that the unknown
depth from the camera to the target remains constant. The
approaches in [2], [3], and [7] are in contrast to typical
multi-camera approaches, that utilize a stereo-based con-
figuration, since stereo-based approaches typically do not
simultaneously exploit local and global views of the robot
and the workspace.
Another issue that has impacted the development of vi-

sual servo systems is the calibration of the camera. For
example, to relate pixelized image-space information to the
task-space, exact knowledge of the camera calibration pa-
rameters is required, and discrepancies in the calibration
matrix result in an erroneous relationship. Furthermore,
an acquired image is a function of both the task-space po-
sition of the camera and the intrinsic calibration parame-
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ters; hence, perfect knowledge of the camera intrinsic pa-
rameters is also required to relate the relative position of
a camera through the respective images as it moves. For
example, the typical visual servoing problem is constructed
as a “teach by showing” (TBS) problem in which a cam-
era is positioned at a desired location, a reference image is
taken (where the normalized task-space location is deter-
mined via the intrinsic calibration parameters), the cam-
era is moved away from the reference location, and then
repositioned at the reference location under visual servo
control (which requires that the calibration parameters did
not change in order to reposition the camera to the same
task-space location given the same image). See [1], [8], [15],
and [11] for a further explanation and an overview of this
problem formulation.

Unfortunately, for many practical applications it may not
be possible to TBS (i.e., it may not be possible to acquire
the reference image by a priori positioning the camera-in-
hand to the desired location). As stated in [11], the TBS
problem formulation is “camera-dependent” due to the hy-
pothesis that the camera intrinsic parameters during the
teaching stage, must be equal to the intrinsic parameters
during servoing. Motivated by the desire to address this
problem, the basic idea of the pioneering development in
[10] and [11] is to use projective invariance to construct
an error function that is invariant to the intrinsic parame-
ters, thus enabling the control objective to be met despite
variations in the intrinsic parameters. However, the fun-
damental idea for the problem formulation is that an error
system be constructed in an invariant space, and unfortu-
nately, as stated in [10] and [11] several control issues and a
rigorous stability analysis of the invariant space approach
“have been left unresolved.”

Inspired by the previous issues and the development in
[3], [10], and [11], this paper utilizes a cooperative cam-
era scheme to formulate a visual control problem that does
not rely on the TBS paradigm. Specifically, a calibrated
camera-in-hand and a calibrated fixed camera are used to
facilitate a “teach by zooming” approach to formulate a
control problem with the objective to force the camera-in-
hand to the exactly known Euclidean position/orientation
of a virtual camera defined by a zoomed image from a fixed
camera (i.e., the camera-in-hand does not need to be posi-
tioned in the desired location a priori using this alternative
approach). Since the intrinsic camera calibration parame-
ters may be difficult to exactly determine in practice, a
second control objective is defined as the desire to servo an
uncalibrated camera-in-hand so that the respective image
corresponds to the zoomed image of an uncalibrated fixed
camera. For each case, the fixed camera provides a global
view of a scene that can be zoomed to provide a close-up
view of the target. The reference image is then used to
servo the camera-in-hand. That is, the proposed “teach
by zooming” approach addresses the camera configuration
issues by exploiting the wide scene view of a fixed camera
and the close-up view provided by the zoom capability and
the camera-in-hand.

II. Problem Formulation

To formulate an alternative to the TBS approach, the
subsequent development will exploit projective geometry
to relate the various camera positions. Based on the devel-
oped relationships, a Euclidean homography is developed
to perform the image reconstruction to facilitate the con-
trol objective.

A. Camera Relationships

To facilitate the subsequent development, consider three
orthogonal coordinate systems, denoted by F , Ff , and F∗,
where F is attached to a camera that is held by a robot end-
effector, Ff is attached to a camera fixed in the workspace,
and F∗ is a coordinate system attached to a virtual camera
that represents the constant, desired position and orienta-
tion of F . The virtual camera coordinate system location
is determined by effectively scaling the fixed camera depth
along the focal axis (i.e., zooming on the target points);
hence, Ff and F∗ have the same rotation with respect to
F as depicted in Fig. 1. As in [14], a reference plane π is de-

Reference Plane 
of Target PointsF

π

Virtual Camera

Fixed Camera
F*

Ff

Reference Plane 
of Target PointsF

π

Virtual Camera

Fixed Camera
F*

Ff

Fig. 1. Camera relationships.

fined by four1 coplanar target points Oi ∀i = 1, 2, 3, 4 that
are not collinear. Each target point on π can be projected
onto the coordinate system of each camera. Based on this
projection, normalized task-space coordinates, denoted by
mi (t), mfi, and m∗i ∈ R3, are defined as follows

mi ,
h xi
zi

yi
zi

1
iT

(1)

mfi ,
·
xfi
zfi

yfi
zfi

1
¸T

m∗i ,
·
xfi
z∗i

yfi
z∗i

1
¸T

1In general, only 3 points are required to define a plane, however,
in the subsequent analysis, 4 coplanar target points located on the
plane π are assumed to be available. The coplanar assumption is
not necessary since 8 points could be used for the development if the
points are not coplanar.
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where the standard assumption is made that the distances
from the origin of the respective coordinate frames to the
reference plane along the focal axis remains positive (i.e.,
zi (t) , zfi, z

∗
i > ε where ε is an arbitrarily small positive

constant). From (1), it is clear that the normalized Euclid-
ean coordinates of mfi can be related to m∗i as follows

mfi = diag{ z
∗
i

zfi
,
z∗i
zfi
, 1}m∗i (2)

where diag{·} denotes a diagonal matrix with the elements
of {·} along the diagonal.
In addition to having a normalized task-space coordinate

as described previously, each target point will also have a
projected pixel coordinate expressed in terms of F denoted
by ui (t) , vi (t) ∈ R, which is defined as elements of pi (t) ∈
R3 as follows

pi ,
£
ui vi 1

¤T
. (3)

The projected pixel coordinates pi (t) are related to the
normalized task-space coordinates mi (t) by the follow-
ing global invertible transformation (i.e., the pinhole lens
model)

pi = Ami (4)

where A ∈ R3×3 is a constant, and invertible intrinsic cam-
era calibration matrix that is explicitly defined as [9]

A ,

 α −α cotφ u0

0
β

sinφ
v0

0 0 1

 . (5)

In (5), u0, v0 ∈ R denote the pixel coordinates of the prin-
cipal point (i.e., the image center that is defined as the
frame buffer coordinates of the intersection of the optical
axis with the image plane), α, β ∈ R represent the prod-
uct of the camera scaling factors and the focal length, and
φ ∈ R is the skew angle between the camera axes. The
constant, pixel coordinates, expressed in terms of Ff and
denoted by ufi, vfi ∈ R, acquired from the fixed camera
before zooming on the target are defined as elements of
pfi ∈ R3 as follows

pfi ,
£
ufi vfi 1

¤T
. (6)

The projected pixel coordinates defined in (6) are related
to the normalized task-space coordinatesmfi (t) by the fol-
lowing global invertible transformation

pfi = Afmfi (7)

where Af ∈ R3×3 is a constant, and invertible intrinsic
camera calibration matrix for the fixed camera defined as
follows

Af ,


αf −αf cotφf u0f

0
βf
sinφf

v0f

0 0 1

 . (8)

After the fixed camera is zoomed to acquire the reference
image, the constant, pixel coordinates, expressed in terms

of F∗ and denoted by u∗i , v∗i ∈ R, are defined as elements
of p∗i ∈ R3 as follows

p∗i ,
£
u∗i v∗i 1

¤T
, (9)

and the new unknown camera calibration matrix, denoted
by A∗ ∈ R3×3, is defined as

A∗ ,


α∗ −α∗ cotφf u0f

0
β∗

sinφf
v0f

0 0 1

 . (10)

A.1 Calibrated Case

Since an acquired image is a function of both the in-
trinsic calibration parameters and the Euclidean position
of the camera, the pixel coordinates of the image acquired
after zooming the fixed camera can be either related to the
normalized task-space coordinates of mfi or m∗i as follows

p∗i = A
∗mfi p∗i = Afm

∗
i . (11)

If the calibration matrix Af is assumed to be known then
mfi can be computed from (7) and m∗i can be computed
from (11). If mfi can be computed, then the first linear
equation in (11) can be used to determine A∗. That is,
the first relationship in (11) represents two equations with
six unknowns (i.e., α∗, β∗, sinφf , cotφf , u0f , v0f ); hence,
three image points can be used to generate six equations.
Moreover, if mfi and m∗i are known then two equations
with two unknowns can be generated from (2) to determine
zfi and z∗i ; hence, the exact Euclidean coordinate of the
target expressed in Ff and F∗ can be determined. That
is, the fixed camera can be zoomed such that the target
points will have known Euclidean coordinates expressed in
Ff and F∗.
To force the camera-in-hand to the Euclidean position

defined by F∗, the subsequent development is based on
comparisons between the pixel coordinates pi(t) and p∗i
with the control objective formulated in terms of the virtual
camera position m∗i rather than in terms of the normalized
fixed camera position mfi. When the intrinsic calibration
matrix for both cameras are known, the control objective
can be formulated in terms of the Euclidean position. How-
ever, since the intrinsic calibration matrices are different,
the images will not be the same at the goal position. That
is, for the calibrated camera case, the objective is to force
mi(t) to m∗i . From (4) and (11), it can be determined that
when mi(t) equals m∗i then

pi = AA
−1
f p
∗. (12)

Remark 1: For the typical TBS approach A = Af . From
(12), it is clear that when the cameras are calibrated the
control objective can be formulated in terms of either the
Euclidean position or the image correspondence under the
TBS assumption.
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A.2 Uncalibrated Case

If the intrinsic calibration matrix Af is not known then
mfi can not be determined and A∗ cannot be computed
from (11). Moreover, since mfi and m∗i are not known
then (2) can not be used to determine zfi and z∗i ; hence,
the exact Euclidean coordinate of the target expressed in
Ff and F∗ can not be determined using the previous meth-
ods that rely on perfect knowledge of the intrinsic parame-
ters. Hence, the objective must be formulated differently
in the presence of uncertainty in the intrinsic calibration
matrix for either camera. Specifically, in contrast to the
calibrated case in which the objective is to force the Euclid-
ean positions to align with non-matching images, for the
uncalibrated case, the objective is to force the images to
correspond with misaligned Euclidean positions. That is,
(4) and (11) can be used to determine that if the images
correspond then the Euclidean coordinates will differ ac-
cording to the following expression

mi = mdi , A−1Afm∗i (13)

where the new normalized Euclidean position mdi ∈ R3
is defined as the Euclidean mismatch. Hence, the control
objective for the uncalibrated case can be formulated as
the desire to force mi(t) to mdi.
Remark 2: From (13), it can also be determined that

even in the uncalibrated case the control objective can be
formulated in terms of either the Euclidean position or the
image correspondence under the TBS assumption. How-
ever, from (12) and (13), it is clear that the camera cali-
bration plays a significant role in formulating the control
objective for the multi-camera TBS alternative approach
developed in this paper.

B. Euclidean Reconstruction

B.1 Calibrated Case

To develop the Euclidean reconstruction, the image from
the camera-in-hand can be compared to the image from the
fixed camera after the zoom task. Specifically, by relating
(4) with the second expression in (11), the following pro-
jective homography can be formulated

pi = λiGp
∗
i . (14)

In (14) the ratio λi(t) ∈ R is defined as follows

λi ,
z∗i
zi

(15)

and G(t) ∈ R3×3 denotes a projective homography. From
the relationship in (14), a set of 12 linear equations given
by the 4 image point pairs (pi, p∗i (t)) with 3 equations per
image pair can be used to determine the projective ho-
mography up to a scalar multiple. After substituting (4)
and the second expression in (11) into (14), the normalized
Euclidean coordinates can be related through a Euclidean
homography, denoted by H(t) ∈ R3×3, as follows

mi = λiA
−1GAf| {z }m∗i
H

(16)

where H(t) defines a rotation and scaled translation be-
tween F and F∗ as follows [12] (see Fig. 2)

H = R+ xhn
∗T . (17)

In (17), R (t) ∈ SO(3) denotes the rotation between F and
F∗, n∗ ∈ R3 denotes the constant unit normal from F∗ to
π, and xh (t) ∈ R3 denotes a translation vector from F to
F∗ that is scaled by the depth related parameter d∗ ∈ R
(see Fig. 2). If the intrinsic calibration matrices A and
Af are known (and hence, mi(t) and m∗i are known), then
various techniques can be used (e.g., see [6], [16]) to de-
compose the Euclidean homography to obtain λi(t), G(t),
H(t), and the rotation and translation signals R(t), xh(t),
and n∗.

π

n *

F

Oi

d*

(xhd*, R)

F*

mi

m*i

π

n *n *

F

OiOi

d*

(xhd*, R)

F*

mimi

m*im*i

Fig. 2. Coordinate frame relationships.

B.2 Uncalibrated Case

If the intrinsic camera calibration matrices A and Af are
difficult to exactly determine, estimates of the elements of
the matrices and the normalized coordinates can be uti-
lized. As stated previously, the control objective for the
uncalibrated case can be stated as the desire to force mi(t)
tomdi introduced in (13). Motivated by the desire to recast
the problem in terms of this new objective, the normalized
coordinates are related through the new Euclidean homog-
raphy, denoted by Hd(t) ∈ R3×3, as follows

mi = λiA
−1GA| {z }mdi

Hd
(18)

where (13) and (16) were utilized. Based on (4), (11),
(18), and the subsequent development, estimates for the
normalized coordinates, denoted by m̂i(t), m̂di ∈ R3, can
be generated as follows [12]

m̂i , Â−1pi = Ãmi m̂di , Â−1p∗i = Ãmdi (19)

where Â ∈ R3×3 denotes a best-guess estimate of the in-
trinsic camera calibration matrix A, and the calibration
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error matrix Ã ∈ R3×3 is defined as follows [12]

Ã , Â−1A =

 Ã11 Ã12 Ã13
0 Ã22 Ã23
0 0 1

 (20)

where Ã11, Ã12, Ã13, Ã22, Ã23 ∈ R denote unknown intrin-
sic calibration mismatch constants. By substituting (19)
into (18) the following relationship can be obtained

m̂i = λiĤdm̂di (21)

where Ĥd (t) ∈ R3×3 denotes the estimated Euclidean ho-
mography defined as follows

Ĥd , ÃHdÃ−1. (22)

Since m̂i(t) and m̂di can be determined from (19), a set
of 12 linear equations can be developed from the 4 image
point pairs, and (21) can be used to solve for Ĥd (t). As
stated in [12], provided additional information is available
(e.g., at least 4 vanishing points), various techniques (e.g.,
see [6], [16]) can be used to decompose Ĥd(t) to obtain the
estimated rotation and translation components as follows

Ĥd = R̂+ x̂hn̂
∗T (23)

where R̂ (t) ∈ R3×3 is related to R (t) as follows

R̂ , ÃRÃ−1, (24)

and x̂h (t) ∈ R3, n̂∗T ∈ R3 denote the estimate of xh (t)
and n∗, respectively, and are defined as follows

x̂h , γÃxh (25)

n̂∗ , 1

γ
Ã−Tn∗ (26)

where γ ∈ R denotes the following positive constant

γ ,
°°°Ã−Tn∗°°° . (27)

C. Control Objective and Design

C.1 Calibrated Case

The control objective for the case when the camera in-
trinsic calibration matrix is known can now be stated as
the desire to ensure that the Euclidean coordinates of F
are regulated to the desired and exactly known Euclidean
coordinates F∗. Based on the development given in (16),
it can be shown that the control objective is achieved if the
Euclidean homography H (t) approaches the identity ma-
trix and either λi(t)→ 1 or mi(t)→ m∗i . Mathematically,
it can be shown that if R(t)→ I3, and the scaled transla-
tion error xh(t)→ 0, then H(t)→ I3. Alternatively, it can
be shown that if R(t) → I3, λi(t) → 1 and mi(t) → m∗i ,
then xh(t)→ 0 and the control objective is achieved.

C.2 Uncalibrated Case

For the case when the intrinsic calibration matrices are
not exactly known, then the control objective is to force
the image from the camera-in-hand to correspond to the
zoomed image of the fixed camera, or stated in terms of
the normalized Euclidean coordinates, the objective is to
force mi(t) → mdi. From (21), it can be shown that the
control objective is achieved if the estimated Euclidean ho-
mography Ĥd (t) approaches the identity matrix and either
λi(t) → 1 or m̂i(t) → m̂di. Mathematically, it can be
shown that if R̂(t)→ I3, and the estimated scaled transla-
tion error x̂h(t)→ 0, then Ĥ(t)→ I3. Alternatively, it can
be shown that if R̂(t) → I3, λi(t) → 1 and m̂i(t) → m̂di,
then x̂h(t)→ 0 and the control objective is achieved.
For examples of how controllers can be designed to

achieve this objective see [4] and [12]. Specifically, in [4]
and [12], a class of controllers are developed (under the TBS
assumption) that prove asymptotic and exponential regu-
lation, respectively, by proving that R̂(t) → I3, αi(t) → 1
and m̂i(t) → m̂∗i . Hence, the development in this paper
could be used to eliminate the TBS assumption for results
such as in [4] and [12].

III. Conclusions

In this paper, an alternative approach to the TBS para-
digm is provided. By examining the relationships between
the coordinate systems and exploiting the use of projective
geometry a mechanism is formalized that enables a differ-
ent camera (e.g., a fixed camera with zoom capability) to
be used to define a reference image for the visual servo
control problem. The advantage of this scheme is that it
enables visual servo control where the TBS mechanism is
not possible and it also provides a method to use multiple
cameras in a configuration to allow for a large view of the
task-space while servoing using a higher resolution view.
An interesting observation is made that when the intrinsic
calibration matrices are known, then the control objective
can be defined as the desire to servo the camera-in-hand
Euclidean position to the known Euclidean coordinates of
a virtual camera defined by a zoomed image. However,
when the control objective is achieved, the images will not
match (i.e., they will differ by a ratio of the intrinsic para-
meters). If the intrinsic parameters are not known exactly,
then the Euclidean coordinates are unknown and the con-
trol objective is formulated on the desire to force the images
to correspond and the Euclidean coordinates will differ by
a ratio of the intrinsic calibration parameters. Subsequent
efforts will demonstrate how the approach can be extended
to encompass tracking results in which the fixed camera
is used to record a desired time-varying trajectory for the
camera-in-hand to track.
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