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Abstract— In this paper, a homography-based adaptive vi-
sual servo controller is described to enable a robot end-
effector to track a desired Euclidean space trajectory as
determined by a sequence of images for the fixed camera
configuration. To achieve the objective, a Lyapunov-based
adaptive control strategy is employed to actively compen-
sate for unknown depth measurements and the lack of an
object model. The error systems are constructed as a hy-
brid of pixel information and reconstructed Euclidean vari-
ables obtained by comparing the images and decomposing a
homographic relationship.

I. INTRODUCTION

A key issue that impacts camera-based visual servo con-
trol is the relationship between the Euclidean-space and the
image-space. One factor that impacts this relationship is
the fact that the image-space is a 2-dimensional (2D) pro-
jection of the 3D Euclidean-space. To compensate for the
lack of depth information from the 2D image data, some re-
searchers have focused on the use of alternate sensors (e.g.,
laser and sound ranging technologies). While some appli-
cations may be suited to alternative vision sensors that
provide depth information, many applications are ill suited
for such technologies. Other researchers have explored the
use of a camera-based vision system in conjunction with
other sensors along with some sensor fusion method or the
use of additional cameras in a stereo configuration that
triangulate on corresponding images. However, the practi-
cal drawbacks of incorporating additional sensors include:
increased cost, increased complexity, decreased reliability,
and increased processing burden to condition and fuse sen-
sor data. Motivated by these practical insights, recent re-
search has focused on monocular camera-based visual servo
strategies that rely on analytic techniques to address the
lack of depth information. One strategy that has recently
been employed involves the use of partitioning methods
that exploit a combination of reconstructed 3D Euclidean
information and 2D image-space information. For exam-
ple, in the series of papers by Malis and Chaumette (e.g.,
[1], [2], [18], [19]) various kinematic control strategies ex-
ploit the fact that the interaction between translation and
rotation components can be decoupled through a homogra-
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phy (i.e., a projective coordinate transformation). Specifi-
cally, information combined from the task-space (obtained
through a Euclidean reconstruction from the image data)
and the 2D image-space is utilized to regulate the transla-
tion and rotation error systems. In [8], Deguchi utilizes a
homography relationship and an epipolar condition to de-
couple the rotation and translation components and then
illustrates how two types of visual controllers can be devel-
oped from the decoupled information. Corke and Hutchin-
son [5] also developed a hybrid image-based visual servoing
scheme that decouples rotation and translation components
from the remaining degrees of freedom. One drawback of
some of the aforementioned controllers are claims (without
a supporting proof) that a constant, best-guess estimate
of the depth information can be utilized in lieu of the ex-
act value. Motivated by the desire to actively compensate
for unmeasurable depth information, Conticelli developed
an adaptive kinematic controller in [3] to ensure uniformly
ultimately bounded (UUB) set-point regulation, provided
conditions on the translational velocity and the bounds on
uncertain depth parameters are satisfied. In [4], Conticelli
et al. proposed a 3D depth estimation procedure that ex-
ploits a prediction error provided a positive definite condi-
tion on the interaction matrix is satisfied. In [10] and [11],
Fang et al. recently developed 2.5D visual servo controllers
to asymptotically regulate a manipulator end-effector and
a mobile robot, respectively, by developing an adaptive up-
date law that actively compensates for an unknown depth
parameter. In [12], Fang et al. also developed a camera-
in-hand regulation controller that incorporated a robust
control structure to compensate for uncertainty in the ex-
trinsic calibration parameters.

After examining the literature, it is clearly evident that
much of the previous visual servo controllers have only been
designed to address the regulation problem. That is, the
objective of most control designs is to force a hand-held
camera to a Euclidean position defined by a static reference
image. Unfortunately, many practical applications require
a robotic system to move along a predefined or dynami-
cally changing trajectory. For example, a human operator
may predefine an image trajectory through a high-level in-
terface, and this trajectory may need to be modified on-
the-fly to respond to obstacles moving in and out of the
environment. Moreover, it is well known that a regulat-
ing controller may produce erratic behavior and require
excessive initial control torques if the initial error is large.



Motivated by the need for new advancements to meet vi-
sual servo tracking applications, previous research has con-
centrated on developing different types of path planning
techniques in the image-space (e.g., see [6], [21], [22], [23]).
More recently, Mezouar and Chaumette developed a path-
following image-based visual servo algorithm in [20] where
the path to a goal point is generated via a potential func-
tion that incorporates motion constraints. In [7], Cowan et
al. develop a hybrid position/image-space controller that
forces a manipulator to a desired endpoint while avoiding
obstacles and ensuring the object remains in the field-of-
view by avoiding pitfalls such as self-occlusion.

In contrast to the approaches in [7] and [20] in which a
path is planned as a means to reach a desired setpoint, hy-
brid tracking controllers are proposed in this paper where
the robot end-effector is required to track a prerecorded
time-varying reference trajectory. To develop the hybrid
controllers, a homography-based visual servoing approach
is utilized. The motivation for using this approach is that
the visual servo control problem can be incorporated with a
Lyapunov-based control design strategy to overcome many
practical and theoretical obstacles associated with more
traditional purely image-based approaches. Specifically,
one of the challenges of this problem is that the translation
error system is corrupted by an unknown depth related pa-
rameter. By formulating a Lyapunov-based argument, an
adaptive update law is developed to actively compensate
for the unknown depth parameter. In addition, the pro-
posed approach facilitates: i) translation/rotational control
in the full six degree-of-freedom task-space without the re-
quirement of an object model, ii) partial servoing on pixel
data that yields improved robustness and increases the like-
lihood that the centroid of the object remains in the camera
field-of-view [19], and iii) the use of an image Jacobian that
is only singular for multiples of 27, and hence, eliminates
the serious problem of singular image Jacobians inherent in
many of the purely image-based controllers. The proposed
homography-based controllers target the fixed camera con-
figuration.

II. GEOMETRIC MODEL

To make the subsequent development more tractable,
four target points located on an object (i.e., the end-effector
of a robot manipulator) denoted by O; Vi = 1, 2, 3, 4 are
considered to be coplanar' and not colinear. Based on this
assumption, consider a fixed plane, denoted by 7*, that is
defined by a reference image of the object. In addition,
consider the actual and desired motion of the plane con-
taining the end-effector feature points, denoted by 7 and
4, respectively (see Fig. 1). To develop a relationship
between the planes, an inertial coordinate system, denoted
by Z, is defined where the origin coincides with the center
of a fixed camera. The 3D coordinates of the target points
on m, mgq, and 7 can be respectively expressed in terms of

1Tt should be noted that that if that if four coplanar target points
are not available then the subsequent development can exploit the
classic eight-points algorithm [18] with no four of the eight target
points being coplanar.
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under the standard assumption that the distances from the
origin of Z to the target points remains positive (i.e., z; (t),
z4i(t), zF > € where ¢ denotes an arbitrarily small posi-
tive constant). Orthogonal coordinate systems F, Fy, and
F* are attached to the planes 7, 74, and 7, respectively,
where the origin of the coordinate systems coincides with
the object (see Fig. 1). To relate the coordinate systems,
let R (t), Rq (t), R* € SO(3) denote the rotation between F
and Z, F,; and Z, and F* and Z, respectively, and let x s (t),
zfa (t), 2} € R3 denote the respective translation vectors
expressed in the coordinates of Z. As also illustrated in
Fig. 1, n* € R® denotes the constant unit normal to the
plane 7* expressed in the coordinates of Z, s; € R? denotes
the constant coordinates of the target points located on the
object reference frame, and the constant distance d* € R
from the origin of Z to 7* along the unit normal is given
by

d* =n*Tm} . (2)

From the geometry between the coordinate frames de-
picted in Fig. 1, the following relationships can be devel-
oped

m; =xf+ Rs;
Mai = Tfq + Rqs; (3)
mi =z} + R"s; .

After solving the third equation in (3) for s; and then sub-
stituting the resulting expression into the first and second
equations, the following relationships can be obtained

m; =Ty + ij‘ Mg; = Tpq + Rdmj (4)
where R (t), Rq(t) € SO (3) and % (t), Zsa(t) € R? are
new rotational and translational variables, respectively, de-
fined as follows

Ry= Ry (R*)"

R=R(R")" )
Tfg = Xfd —Rda:} .

Tp=x5— R:C? (5)
From (2), it is easy to see how the relationships in (4) can
now be expressed as follows

mi = (R + w—fnT) my
_ d .ffd (6)
mg; = (Rd + FH*T) m:

Remark 1: The subsequent development requires that
the constant rotation matrix R* be known. This is a mild
assumption since the constant rotation matrix R* can be
obtained a priori using various methods (e.g., a second cam-
era, Euclidean measurements).



Fixed camera

Fig. 1. Coordinate frame relationships.

III. EUCLIDEAN RECONSTRUCTION

The relationship given by (6) provides a means to quan-
tify a translation and rotation error between F and F*
and between F; and F*. Since the Euclidean position of
F, Fq, and F* cannot be directly measured, a Euclidean
reconstruction is developed in this section to obtain the po-
sition and rotational error information by comparing multi-
ple images. Specifically, comparisons are made between the
current image acquired by the fixed camera, the reference
image obtained a priori, and the a priori known sequence
of images that define the trajectory of F;. To facilitate the
subsequent development, the normalized Euclidean coordi-
nates of the points on 7, 74, and 7* can be respectively
expressed in terms of Z as m; (t), ma (t), m; € R3, as
follows
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The rotation and translation between the coordinate sys-
tems can now be related in terms of the normalized coor-
dinates as follows
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where «; (t), aq (t) € R denote invertible depth ratios,
H (t), Hy(t) € R3*3 denote Euclidean homographies, and
T (t), Tra (t) € R? denote scaled translation vectors that
are defined as follows

Tfd
a*

(12)

Thd =

Each target point on 7, 74, and 7* will have a projected
pixel coordinate expressed in terms of Z, denoted by w; (t),
v; (t) € R for m, ug; (t), v4; (t) € R for g, and u}, v} € R
for 7*, that are defined as elements of p; (¢) (i.e., the actual
time-varying target points), pg; (t) (i.e., the desired time-
varying target point trajectory), and p; (i.e., the constant
reference target points), respectively, as follows

T N
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To calculate the Euclidean homography given in (10) and
(11) from pixel information, the projected 2D pixel coor-
dinates of the target points are related to m; (t), ma; (t),
and m} by the following pin-hole lens models [13]
pi=Am;  pai = Amg;  p; = Am; (14)
where A € R3*3 is a known, constant, and invertible intrin-
sic camera calibration matrix. After substituting (14) into

(10) and (11), the following relationships can be developed

pi=o; (AHA Y p;  pai = i (AH A™Y) py
G G
d

where G (t) = [gij(t)L Gq(t) = [gdij(t)} Vi,j =1,2,3 €
R3*3 denote projective homographies. From the first rela-
tionship in (15), a set of 12 linearly independent equations
given by the 4 target point pairs (p}, p; (t)) with 3 indepen-
dent equations per target pair can be used to determine
the projective homography up to a scalar multiple (i.e.,
the product «;(¢)G(t) can be determined). From the def-
inition of G(t) given in (15), various techniques can then
be used (e.g., see [14], [26]) to decompose the Euclidean
homography, to obtain «;(t), G(t), H(t), and the rota-
tion and translation signals R(t) and Z,(t), and n*. Like-
wise, by using the target point pairs (pf,pa; (t)), the de-
sired Euclidean homography can be decomposed to obtain
aq;i(t), Gyq(t), Hy(t), and the desired rotation and transla-
tion signals R4(t) and Tp4(t). The rotation matrices R(t)
and R4(t) can be computed from R(t) and R4(t) by using
(5) and the fact that R* is assumed to be known. Hence,
R(t), R(t), Ra(t), Ra(t), Z1,(t), Tpa(t), and the depth ratios
a; (t) and ag;(t) are all known signals that can be used for
control synthesis.

(15)

IV. CoNTROL OBJECTIVE

The objective is to develop a visual servo controller that
ensures that the trajectory of F tracks Fy (i.e., m;(t) tracks
ma;(t)), where the trajectory of Fy is constructed relative
to the reference camera position/orientation given by F*.
To ensure that m;(t) tracks mg;(t) from the Euclidean re-
construction given in (10) and (11), the tracking control ob-
jective can be stated as follows?: R(t) — Rq(t), my(t) —

2Any point O; can be utilized in the subsequent development; how-
ever, to reduce the notational complexity, we have elected to select
the image point O1, and hence, the subscript 1 is utilized in lieu of 4
in the subsequent development.



ma1(t), and z1(t) — z41(¢) (and hence, Tp(t) — Tpa(t)).
The 3D control objective is complicated by the fact that
only 2D image information is measureable. That is, while
the development of the homography provides a means to
reconstruct some Euclidean information, the formulation
of a controller is challenging due to the fact that the time
varying signals z1 (t) and z41(¢) are not measurable. In ad-
dition, it is desirable to servo on actual pixel information
(in lieu of reconstructed Euclidean information) to improve
robustness to intrinsic camera calibration parameters and
to increase the likelihood that the object will stay in the
field of view of the camera.

To reformulate the control objective in light of these
issues, a hybrid translation tracking error, denoted by
ey (t) € R3, is defined as follows

€y = Pe — Ped (]-6)
where p. (1), peq (t) € R3 are defined as follows
T
Do = [ up vy —In(aq) ] (17)
T
Pea = [ua va —In(aa) |

and In (-) denotes the natural logarithm. A rotation track-
ing error, denoted by e, () € R3, is defined as follows
tw 20 -0y (18)
where ©(t), ©4(t) € R? denote the axis-angle representa-
tion of R(t) and R,(t) as follows [25]
© =u(t)0(t) ©Oq=uq(t)04(t). (19)
For the representations in (19), u (t), u4 (t) € R3 represent
unit rotation axes, and 6 (t),04 (t) € R denote the respec-
tive rotation angles about u(t) and ug () that are assumed
to be confined to the following regions
—T<O(t)<m —m<Og(t)<m. (20)
Based on the error system formulations in (16) and (18),
the control objective can be stated as the desire to regulate
the tracking error signals e, (t) and e, (t) to zero. If the
tracking error signals e, (t) and e, (t) are regulated to zero
then the object can be proven to be tracking the desired
trajectory (details of this proof are available upon request).
Remark 2: As stated in [25], the axis-angle representa-
tion in (19) is not unique, in the sense that a rotation of
—0 (t) about —u(t) is equal to a rotation of 0 (t) about u(t).
A particular solution for 6 (t) and u(t) can be determined
as follows [25]

0, = cos! (% (tr (R) - 1))

where the notation tr(-) denotes the trace of a matrix and
[up],, denotes the 3x3 skew-symmetric expansion of wuy(t).
From (21), it is clear that

R—RT

[upl, = 2em(6,) (21)

0<6,(t) <m. (22)

While (22) is confined to a smaller region than € (¢) in (20),
it is not more restrictive in the sense that

uplp = ub. (23)
The constraint in (22) is consistent with the computa-
tion of [u(t)], in (21) since a clockwise rotation (i.e.,
—7m < 6(t) <0) is equivalent to a counterclockwise rota-
tion (i.e., 0 < 0 (t) < ) with the axis of rotation reversed.
Hence, based on (23) and the functional structure of the
object kinematics, the particular solutions 8, () and u,(t)
can be used in lieu of (t) and u(t) without loss of generality
and without confining 0 (t) to a smaller region. Since, we
do not distinguish between rotations that are off by mul-
tiples of 27, all rotational possibilities are considered via
the parameterization of (19) along with the computation
of (21). Likewise, particular solutions can be found in the
same manner for 04(t) and uq(t).

Remark 3: To develop a tracking control design, it is typ-
ical that the desired trajectory is used as a feedforward
component in the control design. Hence, for a kinematic
controller the desired trajectory is required to be at least
first order differentiable and at least second order differen-
tiable for a dynamic level controller. To this end, a suffi-
ciently smooth function (e.g., a spline function) is used to
fit the sequence of target points to generate the desired tra-
jectory pg;(t); hence, it is assumed that peq(t) and peq(t)
are bounded functions of time. From the projective ho-
mography introduced in (15), pg;(t) can be expressed in
terms of the a priori known, functions ag;(t), Ha(t), Ra(t),
and ZTpq(t). Since these signals can be obtained from the
prerecorded sequence of images, sufficiently smooth func-
tions can also be generated for these signals by fitting a
sufficiently smooth spline function to the signals. Hence,
in practice, the a priori developed smooth functions ag; (t),
R4(t),and Zp,4(t) can be constructed as bounded functions
with bounded time derivatives. Based on the assumption
that Rg(t) is a bounded first order differentiable function
with a bounded derivative, (21) can be used to conclude
that ug(t) and 04(¢) are bounded first order differentiable
functions with a bounded derivative; hence, ©4(t) and
@d(t) can be assumed to be bounded. In the subsequent
tracking control development, the desired signals p.q(t) and
O4(t) will be used as a feedforward control term.

V. CONTROL FORMULATION
A. Open-Loop Error System

To develop the open-loop error system for e, (), we take
the time derivative of (18) to obtain the following expres-
sion

éw = Ly,Rw. — O4 (24)

where L, (t) € R3*3 denotes a Jacobian-like matrix (see
[10], [17]) and w,(t) € R? denotes the angular velocity of
the object expressed in F. The determinant of L, (t) is
only singular for multiples of 27 (i.e., out of the assumed
workspace); therefore, L, (t) is invertible in the assumed
workspace. To develop the open-loop error system for e, (t),



we take the time derivative of (16) to obtain the following
expression

ziéy = a1 ALy R [ve + [wel 81] — 2 Ped (25)
where v,(t) € R3 denotes the linear velocity of the object
expressed in F. In (25), A, € R3*3 is defined as follows

0 0
Ac=A—]0 0 (26)
0 0

where ug, v9 € R denote the pixel coordinates of the prin-
cipal point (i.e., the image center that is defined as the
frame buffer coordinates of the intersection of the optical
axis with the image plane), and the auxiliary Jacobian-like
matrix L,(t) € R3*3 is defined as

10 -4
21
L, = . (27)
21
0 1

Remark 4: Tt is easy to show that the product A.L, is
an invertible upper triangular matrix from (26) and (27).

B. Closed-Loop Error System

Based on the structure of the open-loop error systems
and subsequent stability analysis, the angular and linear
camera velocity control inputs for the object are defined as
follows

we=RTL;Y (04— K,e.) (28)

1 — . A
Ve = _a_RT (AcLy) ! (Kvey — Z1Pea) — [wely 81 - (29)
1
In (28) and (29), K,,, K, € R**3 denote diagonal matrices
of positive constant control gains, and 2} (t) € R, 51 (t) € R3
denote parameter estimates that are generated according
to the following differential equations

(1) = 1€l Pea (30)

8 = -y [we], RTLT ATe, (31)

where 7; € R denotes a positive constant adaptation gain,
and 'y € R3*3 denotes a positive constant diagonal adap-
tation gain matrix. After substituting (28) into (24), the
following closed-loop error dynamics can be obtained

e, = —K,e,. (32)

After substituting (29) into (25), the closed-loop transla-
tion error dynamics can be determined as follows

Ziéy = —Kyey + 0 AcLyR [wel, 51 — Z{Ped (33)
where the parameter estimation error signals 2§ (¢) € R and
51(t) € R? are defined as follows

lezik—éik §1:81—§1.

(34)

VI. STABILITY ANALYSIS

Theorem 1: The adaptive update laws defined in (30)
and (31) along with the control inputs designed in (28)
and (29) ensure that e, (¢) and e, (t) are asymptotically
driven to zero in the sense that

Jim [lea(0)]. fles(B)]] = 0. (35)
Proof: To prove Theorem 1, a non-negative function
V(t) € R is defined as follows

1 ; 1 1
VA T, + eTe 4 — 5224 55{1“;151. (36)

9w 2 27, !
After taking the time derivative of (36) and then substitut-
ing for the closed-loop error systems developed in (32) and
(33), utilizing the time derivative of (34), and substituting
the adaptive update laws designed in (30) and (31), the
following simplified expression can be obtained

V= erKwew - evaev (37)
where the fact that [we}z = — [we], was utilized. Based on
(34), (36), and (37), it can be determined that e, (t), e, (¢),
Zi(t), 21 (1), 51(t), 51(t) € Loo and that e, (t), ey(t) € Le
[9]. Based on the assumption that ©,4(t) is designed as
a bounded function, the expressions given in (18) and
(28) can be used to conclude that w.(tf) € L. Since
ey(t) € Lo, (7), (13), (14), (16), (17), and (27) can be
used to prove that mq(t), Ly(t) € Loo. Given that peq(t) is
assumed to be bounded function, the expressions in (29) -

(33) can be used to conclude that 25 (t), §1(t), ve(t), é,(¢),
€w(t) € Loo. Since ey, (t), ,(t) € Le and ey (t), €, (1), ey(t),
é,(t) € Lo, Barbalat’s Lemma [24] can be used to prove
the result given in (35). O

VII. CONCLUSION

In this paper, an adaptive visual servo controller is devel-
oped for the fixed camera configuration to enable the end-
effector of a robot manipulator to track a desired trajec-
tory determined by an a priori available sequence of images.
The controller is formulated using a hybrid composition of
image-space pixel information and reconstructed Euclid-
ean information that is obtained via projective homogra-
phy relationships between the actual image, a reference
image, and the desired image. To achieve the objective,
a Lyapunov-based adaptive control strategy is employed to
actively compensate for the lack of unknown depth mea-
surements and unknown object model parameters.
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