
SNOW : Software Systems for Process Migration
in High-Performance,

Heterogeneous Distributed Environments �

Kasidit Chanchio
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37819
chanchiok@ornl.gov

Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616

sun@cs.iit.edu

Abstract

This paper reports our experiences on the Scalable
Network Of Workstation (SNOW) project, which imple-
ments a novel methodology to support user-level pro-
cess migration for traditional stack-based languages
such as C and Fortran in heterogeneous distributed
environments. Our methodology addresses the three
outstanding problems of transferring execution state,
memory state, and communication state. The concepts
of migration point analysis and buffered data trans-
fer mechanism are proposed for execution state mi-
gration. A memory space representation model is in-
troduced to obtain the machine-independent format of
the underlying data structures for memory state migra-
tion. Finally, process migration and communication
protocols are developed to migrate the communication
state and maintain the functionality and correctness of
data communication. The coordinated software sys-
tems consisting of compilation and runtime systems
have been proposed to support these mechanisms. A
prototype compilation system has been partially im-
plemented under our methodology. Runtime systems
including a runtime library and communication pro-
tocols have been developed. Sequential and parallel
programs with different data structures and computing
requirements are tested. Experimental results confirm
our design analysis. They advocate the value of the
migration methodology for distributed network com-

� This work was supported in part by National Science Foun-
dation under NSF grant ASC-9720215, CCR-9972251, and by IIT
under the ERIF award.

puting.

1 Introduction

Process migration is the act of transferring a live
process from one system to another. The two sys-
tems may differ in hardware and/or operating environ-
ments, in which case the migration is across heteroge-
neous platforms. Applications of process migration in-
clude load distribution, fault resilience, resource shar-
ing, data access locality, mobile computing, etc. In
large-scale distributed environments such as the com-
putational grids [1], process migration allows runtime
adaptability in resource utilization by moving pro-
cesses among computation resources, which can lead
to performance improvement for individual applica-
tions and high throughput for distributed systems. Pro-
cess migration in heterogeneous environment is even
more important where an application process can dy-
namically change its runtime environment by migrat-
ing to an upgraded or more appropriate computation
platform.

Despite these advantages, efficient process migra-
tion in a heterogeneous distributed environment is a
subject of great challenge. Problems in the design
and implementation of such mechanisms lay in three
problem domains: mechanisms to migrate execution
state, memory state, and communication state of a
process. In a heterogeneous environment, the ex-
ecution state of a process cannot simply be trans-
ferred by copying program counter registers across

machines. Machine-independent mechanisms are re-
quired for transferring the execution state. For the
memory state, problems arise due to different in mem-
ory configuration and memory management among
heterogeneous computers. Memory storages on differ-
ent computers could have different data formats, mem-
ory addressing scheme, etc. Mechanisms to capture in-
formation in a process memory space as well as to mi-
grate them to a new computer are needed. Finally, cor-
rectness in data communication has to be maintained
during process migration. In internet and enterprise
network computing, processes are most likely commu-
nicating with one another. Correct data communica-
tion must be guaranteed. Mechanisms to migrate the
communication state have to be carefully developed to
warrant the correctness and, in the meantime, mini-
mize the overhead.

The Scalable Network of Workstations (SNOW)
project [2] intends to construct software systems to
support low-level mechanisms to carry user-level pro-
cess migration in heterogeneous distributed environ-
ment. The target processes are those developed in C
or Fortran languages, usually used in legacy code and
high-performance applications. During the past five
year, SNOW is our continuous attempt to automati-
cally enhance platform-independent mobile capability
to high-performance distributed computation. Its ma-
jor design goals include improvement in portability–
the migration mechanisms have to be highly portable
to a large number of computing platforms, scalability–
the performance of the mechanisms must be indepen-
dent of the number of computers or computing plat-
forms in the environment, efficiency–the mechanisms
must not generate unacceptable overheads and have to
be algorithmically optimized to handle large and com-
plex process state transfer, residual dependency–the
migrant process must be independent from comput-
ers in its itinerary, and automation–the enhancement of
migration capability should be as automatic and user-
transparent as possible.

2 Process Migration Mechanisms

In achieving its goals, SNOW provides novel mech-
anisms to migrate the computation state, memory
state, and communication state of a process. These
mechanisms are implemented under SNOW’s coor-

dinated software systems consisting of compilation
and runtime systems. Although the developments of
these mechanisms require tremendous efforts, we have
successfully designed and implemented them with-
out lost of the major design goals mentioned aboved.
In SNOW’s contributions, the mechanisms for execu-
tion state and memory state migration present signif-
icant performance improvement over existing mech-
anisms in heterogeneous process migration research.
The mechanisms for communication state transfer also
exhibit obvious performance improvement over exist-
ing works and are very practical to be implemented in
large-scale distributed systems. Moreover, the coordi-
nated software systems are, in our knowledge, the only
systems that combine the three mechanisms to support
process migration between heterogeneous computers.

��� ������	
�
 � �	����� ������	�

�����

In order to transfer execution state of a process in a
heterogeneous environment, we have developed a pre-
compiler to analyze program source code and augment
process migration operations into the source code in
the form of programming macros. At the program
analysis stage, the pre-compiler first checks whether
the source code is valid for process migration. In lan-
guages such as C, certain language features are highly
dependent on underlying computation platforms and
may not be safe for heterogeneous process migration
[3]. These language features will be transformed to
equivalent features during the pre-compiler process.

After the source code is verified, mechanisms to
capture, transfer, and restore execution state of a pro-
cess are implanted into the source code. In doing
so, the pre-compiler first determines appropriate lo-
cations in various function bodies in the source code,
namely the poll-points, which allow a process to mi-
grate. A poll-point or a sequence of poll-points (in
case of nested function calls) being recognized at the
moment of process migration are considered to repre-
sent a logical execution state of the process. The se-
lection of poll-point locations can either base on au-
tomatic program analysis or user-directive. We call
a poll-point where process migration occurs at run-
time as the migration point. The mechanism for au-
tomatic selection of poll-points is called the migration

point analysis [4, 2]. Then, at each poll-point, the pre-
compiler applies live variable analysis to determine a
minimal set of variables whose values need to be col-
lected for future computation after a migration com-
pletes.

Finally, the pre-compiler inserts macros at the poll-
points in the source code. These macros contain algo-
rithms which work collectively to collect, transfer, and
restore process state during process migration. Mech-
anisms to migrate memory state and communication
state transfer are also invoked in these macros. Dur-
ing the migration, if a nested function call occurs,
the macros in different functions have to cooperate
to gather partial state information associated to each
function and migrate them. We name such cooperation
the data transfer mechanism. A buffered data transfer
(BDT) mechanism is designed to carry the data trans-
fer effectively [5, ?]. It allows process state collection,
transfer, and restoration to operate concurrently in net-
work environment and can improve migration perfor-
mance over existing works in this area.

��� ������	
�
 � �	����� �����

�����

Generally, in a process memory space, every vari-
able occupies a piece of memory containing data val-
ues of a certain type. We refer to this piece of memory
as a memory block. A memory block may reside in
any part of a program memory space: global, stack,
or heap segments. The data type could be primitive
data types such as character, integer, and pointer, or it
could be compositional types such as array or struc-
ture. In case of pointer, the data value is a mem-
ory address. The pointer is considered as a primi-
tive data type which allows a referential relationship
among memory blocks to be created.

To migrate a process across heterogeneous plat-
forms, data structures in the process memory space
must be correctly collected, transferred, and restored.
Data values in memory blocks as well as the referential
relationships among them must be preserved in the mi-
gration. In our approach, we define a logical memory
model and implement associate operations to migrate
the memory state.

Memory Space Representation

We define a logical memory model, namely the Mem-
ory Space Representation (MSR) model, to represent
process data structures machine-independently [6].
The model is based on graphical notations in which
a memory block is represented by a vertex and a refer-
ential relationship between two memory blocks (gen-
erated by a pointer) is represented by a graph edge. A
diagram in Figure 1 shows the basic idea behind our
mechanisms where the machine-specific data struc-
tures are mapped into the MSR model and then con-
verted to the physical memory format of the destina-
tion computer. Since a common, machine-independent
memory model is used in data conversion, the conver-
sion mechanism is scalable, i.e., they are independent
from the number of computing platforms involved in
the environments.

In our implementation, data structures and a run-
time library that provide such mapping and conver-
sion mechanisms are created. The MSR Look up ta-
ble (MSRLT) data structures are built to match phys-
ical and logical representations of memory blocks in
process memory space. The MSRLT also provides
logical identifications (or addresses) for the memory
blocks. From the figure, by implementing the MSRLT
on two different computers, the memory address of a
memory block on computer A would have a one-to-
one mapping to a logical address, and then to a mem-
ory address on computer B, consecutively. In term of
conversion operations, the MSR graph Manipulation
(MSRM) runtime library contains routines for data
collection and restoration. This library is linked to
the annotated source code during the platform-specific
code generation for different computing platforms.

Data Collection and Restoration

When a migration occurs, the data collection opera-
tion on the migrating process starts collecting values
of live variables at the migration point. The annotated
macro at the migration point contains calls to routines
in the MSRM library that perform data collection and
restoration.

Since the variables’ storages are associated to the
MSR graph nodes, the data collection operation tra-
verses the MSR graph in a depth-first-search manner
and collects information in memory blocks. Nodes for

Use
machine-
specific
memory
address

Use
machine-
specific
memory
address

MSR Lookup
table (MSRLT)

The mapping
table from
computer A
to MSR

Memory space
of migrating
process

Memory space

process
of a new

The MSR logical
memory model

computer A computer B

Logical
memory
address

MSR Lookup
table (MSRLT)

The mapping
table from
MSR model
to computer B

Figure 1. Relationships between logical and physical memory models

live variables are considered to be starting points of
such traversals. As a results, only data from nodes and
edges reachable in the MSR graph are collected. They
are, then, converted into a machine-independent for-
mat and sent to a destination machine.

After receiving the machine-independent migration
information, the new process on the destination ma-
chine employs the MSRLT data structures and the
MSRM library routines to map graph nodes in the
MSR model back to physical memory blocks in mem-
ory space of the destination computer.

Then, the restoration operation extracts data values
from the transmitted migration information, converts
them to machine-specific format, and stores the out-
put data values at appropriate memory block locations
in the memory space of a process on the destination
computer. Detailed discussions of these mechanisms
can be found in [?].

��� ������	
�
 � �	����� �����	���

�	� �����

In a process migration environment, messages may
be in transit while their sender or receiver processes
migrate. Mechanisms to guarantee no message loss
and correct message ordering must be developed for
correct data communication.

In our design, we have developed a data communi-
cation and process migration protocols for such pur-
poses. The communication protocol involves algo-
rithms for sending and receiving messages, while the
process migration protocol concerns algorithms to co-
ordinate a migrating process and its communication
peers. Both protocols work collectively to support cor-

rect data communication.

Basic concepts behind our designs rely on the
connection-oriented communication model, where an
FIFO communication channel has to be established
prior to message passing. From perspectives of a mi-
grating process, at the moment of process migration,
there exist two sets of peer processes in distributed en-
vironments: sets of connected and unconnected peers.
Based on different connection status, we consider the
problems of communication state transfer in three sit-
uations. First, we consider mechanisms to handle mes-
sages in transit (between the migrating process and the
connected peers). Second, we consider mechanisms to
handle connection request and message passing (from
unconnected peers). Finally, we consider mechanisms
to restore communication state of the migrating pro-
cess when the migration finishes. The protocols are
discussed in details in [?, ?].

Our protocols are suitable for process migration in
large-scale distributed environments due to the follow-
ing properties. First, they make process migration
scalable. During the migration, the protocols only co-
ordinate a minimal set of peer processes, only those
directly connected with the migrating process. Sec-
ond, the protocol is nonblocking i.e., they allow other
processes to send messages to the migrating process
simultaneously during a migration. The performance
improvement from this feature distinguishes our com-
munication/migration algorithms from other works in
this area. Third, the protocols do not create deadlock.
The process migration protocol prevents circular wait
while coordinating a migrating process and its peers
for process migration. Finally, the protocols are prac-
tical and can support heterogeneous environment. We

have implemented them in a prototype message pass-
ing library running on top of the PVM communication
system.

��� ����

 �	����	� ���	������

We have developed the coordinated software sys-
tems consisting of the pre-compilation and runtime
systems to support process migration environment.
In the environment, we assume that the augmented
source code is distributed to every computer which
may involve process migration, and executables are
generated by native compilers on different platforms.
During the compilation, the source code is linked with
libraries to handle memory state and communication
state transfers.

In our design, a runtime system for process migra-
tion consists of a virtual machine, runtime libraries,
and a scheduler. The virtual machine consists of
daemon processes cooperating each other for process
management in PVM’s style [?]. The runtime libraries
contain routines to perform process state transfer and
message passing. The scheduler is a process which
monitors resource utilization and assigns application
processes to computers in the environment.

At runtime, after determining the migrant process as
well as the source and destination computers for pro-
cess migration, the scheduler sends a signal to invoke
an executable (on the destination computer), which
is generated from the same annotated source code as
that of the migrating process, to wait for process state
transfer. Then, it sends a migration request to the mi-
grating process which, after intercepting the request,
will continue execution until the nearest poll-point is
reached. At the migration point, the annotated macros
embark the data transfer mechanism to coordinate pro-
cess state transfer between the two machines. Finally,
program execution is resumed on the destination ma-
chine after the migration is complete.

3 Experimental Results

Data Collection and Restoration in Heterogeneous
Environments

A prototype migration-supported distributed system,
the Scalable Networks of Workstations (SNOW) sys-
tem, has been partially developed. We have conducted

three experiments on three different applications un-
der the SNOW environment. In the first two experi-
ments, we show heterogeneous process migration of
sequential processes from a DEC 5000/120 worksta-
tion running Ultrix to a Sun Sparc 20 workstation run-
ning Solaris 2.5. The migration is conducted via the
10 Mbits/s Ethernet network. The experimental pro-
grams have two different types of data structures and
execution behaviors. First, the C version of the lin-
pack benchmark is a numerical intensive application
with array-based data structure. Second, the C imple-
mentation of the bitonic sort program which contain
intensive dynamic memory allocation and recursion.

As shown in Table 1, we have tested both programs
with two different data sizes, which cause different
size of data transmission (Tx Size) during process mi-
gration. The total cost of process migration can be split
into three parts: the cost of scanning data structure of
a migrating process (Scan), the cost of transmitting
those data (Tx), and the cost of restoring them on a
destination machine (Restore).

In the migration of the linpack benchmark, the cost
of memory scanning and restoration are small due to
simple array data structures used in the benchmark.
The data collection operations spends trivial amount of
time searching for data in the program memory space.
On the other hand, the memory scanning and restora-
tion costs in the migration of the bitonic sort program
is relatively high. Since the bitonic sort contain tree
data structure and have recursion behavior, the data
collection and restoration mechanisms have to spend
more time searching data in the process memory space.
More measurements and discussion on execution state
and memory state transfers can be found in [?].

Execution Overhead

Source code annotation may remove certain code op-
timizations and bring some overhead to the execu-
tion. The overheads are application-specific and base
on various factors. Without considering the external
factors such as interaction with the operating system
or I/O contention, experiences show that the overhead
of process migration depends mostly on two factors:
the placement of poll-points and the number of mem-
ory allocations. The overhead could be high if poll-
points are placed in a kernel function which performs

Program Linpack bitonic
Tx Size (in bytes) 325,232 8,021,232 46,704 182,248
Scan 0.303 5.591 0.150 0.419
Tx 0.357 9.815 0.053 0.191
Restore 0.095 2.962 0.077 0.278
Migrate (in seconds) 0.756 18.368 0.280 0.889

Table 1. Timing results of heterogeneous process migration of the linpack and bitonic sort programs.

only few operations but being invoked so many times.
For memory allocation, the overhead could be high if
many small memory blocks are repeatedly allocated,
causing collectively high costs to update and maintain
the MSRLT. However, the overhead occurred is rea-
sonable and mostly can be avoided. In a practical sit-
uation, there is no need to insert poll-points inside a
small kernel. Smart memory allocation policies may
also be employed in the applications to avoid over-
heads in memory management.

Migration in Heterogeneous Distributed Systems

Finally, in the last experiment we tested our proto-
type process migration mechanism, process migration
protocol, and reliable direct data transmission with an
NAS parallel numerical kernel MG benchmark [7].
The kernel MG is a parallel program to execute four
iterations of the V-cycle multigrid algorithm to get an
approximate solution to a discrete Poisson problem
with periodic boundary conditions on a �����������
grid. The C implementation using PVM from [7] is
modified for migratability. The program contain ex-
tensive interprocess communications and complicate
data structures. We originally run the benchmark on
a cluster of 8 Sun Ultra 5 workstations; each con-
tain an application process. Then, after two itera-
tions in the function �������� with a function call
sequences ��	� � ��������, we migrate a pro-
cess to an idle Ultra 5. All machines are connected
via 100Mbit/s Ethernet. Figure 2 captures communi-
cation behaviors of the benchmark using XPVM. The
process 0 migrates its state information to a wait-
ing process (initialize) on a new machine.

Table 2 shows the measured turnaround time of the
parallel MG benchmark. We can see that the cost to

carry a process migration is quite small. The overhead
of running the modified code is about 0.249 seconds on
average and the overhead of execution time with sin-
gle process migration is 2.2922 seconds on average.
In the comparison of communication time of our mod-
ified program to that of the original benchmark, the
results shows the overhead of our reliable data com-
munication protocol to be very small. In the parallel
kernel MG benchmark, extensive message passing and
data communication occurs; over 48 Mbytes of data
on the total of 1472 messages are transmitted during
its execution. In case of process migration, over 7.5
Mbytes of live data are transmitted with the average
of 0.7662, 0.73, and 0.6794 seconds for transmission
time, data collection time, and data restoration time,
respectively. The process migration protocol spends
0.1166 seconds to coordinate with other communicat-
ing processes. The total process migration time on av-
erage is 2.2922 seconds. The process migration over-
head increases the turnaround time and communica-
tion time because some parallel processes have to wait
for messages from the migrant process. None of the
sender processes are blocked during process migra-
tion. More details about the data communication and
process migration protocols can be found in [?, ?].

Total original modified migration
Execution time 16.130 16.379 18.833
Communication 4.051 4.205 6.647

Table 2. Timing results (in seconds) of over-
haed of the migratable kernel MG program.

Figure 2. A space-time diagram with a process migration.

4 Related Works

A major contribution of SNOW is the ability to
efficiently migrate collaborative processes developed
in C or Fortran between heterogeneous computers.
Many projects such as MOSIX, V, Sprite, Charlotte,
DEMO/MP Accent, and Freeze-Free [8] have imple-
mented migration mechanisms inside operating sys-
tems. These systems are highly dependent on OS
and underlying hardware. They are hardly possible to
be extended to support heterogeneous process migra-
tion. Alternatively, process migration mechanisms can
be implemented in user space without kernel modifi-
cation. Checkpoint/restart mechanisms are employed
in this approach. Condor [9], Cocheck, Libpkct, and
MPVM are in this direction. However, they only sup-
port migration in homogeneous systems.

Though some attempts have been made, there is
no widely-accepted solution for heterogeneous pro-
cess migration. Existing approaches for heterogeneous
process migration can be classified mainly into two
groups: the enhancement of compilation system and
using mobile agent technology. SNOW follows the
former and implements migration mechanisms in user
space. While mobile agent systems provide a satisfac-
tory solution for many internet applications, they may
not be an appropriate choice for computation intensive
applications.

Along the enhancement direction, there exist a few

different designs. An early work of Theimer and
Hayes [10] proposes a recompilation approach which
pioneers source code manipulation method to achieve
machine-independent state transfer. However, this ap-
proach may create large migration costs due to the
recompilation of source code during migration oper-
ation. A theoretical framework for language systems
that support heterogeneous process migration is pre-
sented by von Bank, Shub, and Sebesta [?]. Their
work provides a solid theoretical background for later
research in this direction.

More recently, the TUI [3] system has modified
a compiler and employed external agents to support
heterogeneous process migration. Compiler modifi-
cation allows TUI to have an advantage of no exe-
cution overhead. However, the need to modify the
front-end and back-end of the compiler may limit its
portability to various computer platforms. Another re-
search, namely the PI [11] project, is similar to an
early version of SNOW, namely MpPVM [12]. The
PI supports heterogeneous process migration by defin-
ing poll-points and augmenting migration operations
into source code. However, our approach and the PI
employ different mechanisms to migrate the execu-
tion and memory state. Based on the function call
sequence, PI requires state information of inner func-
tions to be collected first and restored last at the mi-
gration destination. Their design causes process state
collection, transfer, and restoration to be performed

strictly on separate timeframe. On the other hand,
the SNOW’s design the three operations to perform in
pipelining manner. In memory state migration, unlike
the PI approach where all data in memory space must
be transferred to a destination computer during pro-
cess migration, our migration mechanisms only trans-
fer data necessary for future computation of a pro-
cess after the migration complete. Moreover, our ap-
proach has integrated mechanisms to handle point-to-
point communication during process migration, which
distinguishes itself from the PI, TUI, and other works
in this area.

Most of mechanisms to support communication
state transfer are developed for homogeneous migra-
tion systems. Due to space limitation, we only discuss
performance differences of their algorithms. Charlotte
[?] employs the link concept, where a process can refer
to the same link throughout its computation regardless
of mobility. However, Charlotte freezes sending op-
erations on sender computers when receiver processes
migrate. On the other hand, the Freeze-Free [?] algo-
rithm does not block sending operations on the sender
computers, but require the sending operations to be de-
layed while messages received at the source computer
during execution and memory state collection being
transmitted to a destination machine. SNOW further
optimizes the sending operation. In our design, the
sender only delay for the amount of time needed to
obtain a new location of the receiver process from the
scheduler, the best performance so far.

While Charlotte and Freeze-Free implements
kernel-level migration, CoCheck [?] and MPVM [?]
implement the migration mechanisms in user-space.
CoCheck is specifically designed to support coordi-
nated checkpointing but can be employed for migra-
tion. It suffers drawback since some senders must
be blocked to maintain global consistency. On the
other hand, MPVM allows messages to be sent dur-
ing migration, however they must be routed via PVM
daemon causing degradation in communication perfor-
mance.

5 Conclusions

We have presented a process migration methodol-
ogy for stack-based languages in a heterogeneous net-
work environment. Our approach bases on three novel

mechanisms to machine-independently capture, trans-
fer, and restore execution, memory, and communica-
tion states of a process. There are three main contribu-
tions in these research:

1. We have designed a compilation system to cap-
ture machine-independent representation of the
execution state of a process. The pre-compiler
performs program analysis and source code anno-
tation to implant process migration mechanisms
into user programs.

2. We have developed a runtime library to collect
and restore the memory state of a process. A
novel MSR concept is proposed to view program
data structure in graphical format. Based on this
logical viewpoint, the data collection and restora-
tion mechanisms are built based on the depth-
first-search graph traversal algorithm.

3. Reliable data communication and process migra-
tion protocols have been developed to guarantee
correct message passing between processes in a
migration supported environment. The protocols
have been successfully implemented as a thin-
layered programming library built on top of PVM
communication system.

The SNOW system is partially implemented to sup-
port process migration under PVM distributed envi-
ronment. A number of experiments are performed un-
der SNOW to verify the correctness and efficiency of
our designs. We find that these methods correctly mi-
grate sequential and parallel processes with different
execution behaviors, data structures, and communica-
tion intensity. Experimental results indicate that the
migration cost depends on the complexity of the ap-
plications’ data structures and data size. The results
also show that execution overheads might occur due
to source code annotation. We have found that such
overheads depends on the selection of migration points
in program source codes and can be controlled us-
ing appropriate migration-point selection policy. Fi-
nally, our data communication protocol generates very
small communication overheads when applied to the
communication-intensive kernel MG parallel bench-
mark. Experimental results show that the proposed
methodology is practical and has real value for het-
erogeneous network computing.

The need of heterogeneous process migration for
future distributed computation is vital [1]. Works are
still left to be done in many areas. In the near future,
we plan to perform more case studies on a number
of parallel applications with different communication
characteristics, and through the SNOW project [2], de-
velop a compilation system to support semi-automatic
process migration. We believe that the development of
such tools will advocate new applications of dynamic
network computing.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint
for a New Computing Infrastructure. Morgan
Kaufmann Publishers, Inc., 1999.

[2] X.-H. Sun, V. K. Niak, and K. Chanchio, “A
Coordinated Approach for Process Migration in
Heterogeneous Environments,” in 1999 SIAM
Parallel Processing Conference, Mar. 1999.

[3] P. Smith and N. Hutchinson, “Heterogeneous
process migration : The TUI system,” Tech. Rep.
96-04, University of British Columbia, Depart-
ment of Computer Science, Feb. 1996.

[4] K. Chanchio and X.-H. Sun, “Efficient pro-
cess migration for parallel processing on non–
dedicated network of workstations,” Tech. Rep.
96-74, NASA Langley Research Center, ICASE,
1996.

[5] K. Chanchio and X.-H. Sun, “How to transfer
complex data structure in c across machines in
a heterogeneous network.” In Progress, 1996.

[6] K. Chanchio and X.-H. Sun, “Memory space rep-
resentation for heterogeneous networked process
migration,” in 12th International Parallel Pro-
cessing Symposium, Mar. 1998.

[7] S. White, A. Alund, and V. S. Sunderam, “Per-
formance of the nas parallel benchmarks on
pvm based networks,” Tech. Rep. RNR-94-008,
Emory University, Department of Mathematics
and Computer Science, May 1994.

[8] D. S. Milojicic, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou, “Process Migration,”
tech. rep., TOG Research Institute, Dec. 1996.

[9] M. J. Litzkow and et al., “Condor–a hunter of idle
workstations,” in Proceeding of the 8th IEEE In-
ternational Conference on Distributed Comput-
ing Systems, pp. 104–111, June 1988.

[10] M. H. Theimer and B. Hayes, “Heterogeneous
process migration by recompilation,” in Proceed-
ing of the 11th IEEE International Conference on
Distributed Computing Systems, pp. 18–25, June
1991.

[11] A. J. Ferrari, S. J. Chapin, and A. S. Grimshaw,
“Process introspection: A heterogeneous check-
point/restart mechanism based on automatic code
modification,” Tech. Rep. CS-97-05, University
of Virginia, Department of Computer Science,
Mar. 1997.

[12] K. Chanchio and X.-H. Sun, “MpPVM: A soft-
ware system for non–dedicated heterogeneous
computing,” in Proceeding of 1996 International
Conference on Parallel Processing, Aug. 1996.

