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Abstract: We propose a formalism called Stochastic Message Sequence Charts (SMSC) and describe 

how SMSC can be used in the Möbius modeling framework. SMSC is a stochastic extension to the 

Message Sequence Chart (MSC) formalism used to describe the communication behavior among system 

components. Compared with MSC, SMSC is suitable for performance analysis. We integrated the SMSC 

formalism into the framework to enable the use of the Möbius solvers for evaluating the stochastic 

properties and to leverage the Möbius multiple-formalism modeling feature. This feature enables the 

SMSC models to interact with models from other formalisms thereby providing valid prediction and/or 

measurement results. The SMSC formalism provides an atomic formalism for Möbius users and can be 

used as building blocks for larger hybrid (multi-formalism) models.  

Keywords: Message Sequence Charts, Distributed Systems, Stochastic Modeling, Formal Specification, 

and Performance Analysis. 

1. Introduction 

In the past two decades, much research has been conducted in the area of formal methods. Various 

formalisms have been studied and the corresponding tools developed [1-9]. The use of formal methods has 

evolved as the choice for developing software and hardware systems, for achieving higher performance 

and dependability. Performance evaluation is an important branch of formal analysis of system properties 

[10-15]. It concerns the quality of service a system can provide. However, not all formalisms are suitable 

for performance evaluation. For example, the original formulations of Petri Nets [16] and Process 

Algebras [17] cannot be used for performance evaluation and were originally useful for evaluating 
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properties such as system liveness, deadlock free, and other static properties.1 

Message Sequence Chart (MSC) [18, 19] is a Specification Description Language (SDL) widely used 

in industry for requirement and design specification as well as test case description. As a formal language, 

MSC has a well-defined syntax and semantics. MSC models are decomposed into a number of 

independent message passing instances. System behavior is evaluated through a series of charts indicating 

interactions between those instances. However, MSC cannot be used for performance evaluation.  

Consequently, the first problem addressed here is making MSC suitable for performance evaluation. 

This can be accomplished in a similar fashion as was done for Stochastic Petri Nets (SPNs) and 

Generalized SPNs (GSPNs) [20, 21], where transitions are associated with stochastic timing information 

used to evaluate system performance and are widely used for this purpose. A similar extension to PAs 

exists, known as Stochastic Process Algebra (SPA) [22], where events are associated with random time 

information, also used for system performance evaluation. Based on the same idea, we have extended 

MSCs to Stochastic MSC (SMSC) for performance analysis. Although much research has transpired [23-

25] since MSC was proposed, it has not been extended to enable the modeling of stochastic properties. 

The second problem concerns how to create an analysis tool (i.e., how to solve SMSC models). To 

address this problem, SMSCs are incorporated into the Möbius framework [26]. Möbius includes a well-

defined backplane for multi-formalism modeling that includes several formalisms (SAN: Stochastic 

Activity Network [27], PEPA: Performance Evaluation Process Algebra [28], etc.), which have been 

successfully integrated [29, 30]. Therefore SMSC can be integrated into Möbius to enable such models to 

interact with other built-in Möbius formalisms. By implementing the interfaces required by Möbius, we 

need not provide analyzers or solvers for the SMSC models. Möbius provides solvers that are applicable 

to solving SMSC models. The SMSC formalism, together with others available within Möbius, can be 

used for dependability analysis (i.e., performance, availability and reliability or performability analysis). 

2. Message Sequence Charts and the Möbius framework 

The full specification of the Message Sequence Charts language can be found at [19]. Here, we briefly 

                                                 
1 Stochastic PNs and PAs do, however, provide such capabilities. 



 2

introduce the MSC formalism and 

provide some basic concepts 

necessary to understand our 

approach. These concepts include 

the basic constructs of MSCs, event 

ordering rules, the composition of 

MSCs and High-level MSCs.  

The MSC formalism describes a system using a series of charts; each specifies part of the system 

behavior. These charts are combined together to depict the whole system. Inside each chart, there are 

several independent instances that represent components of the system and these instances exchange 

messages and perform actions. MSCs are always placed within the context of some encompassing 

environment. An MSC can be represented graphically or textually.  Figure 1 shows an example of a basic 

MSC with its graphical and textual representations and is composed of the following constructs: 

• Instances: the primary entities that represent system components. 
• Messages: Information exchanged between instances. 
• Local Actions: actions happened within one instance without communicating with other 

instances. 
• Conditions: System state that may restrict the occurrence of certain events. 
• Coregion: A region where the order of events does not matter. 
• General ordering: A construct to explicitly specify the order of two events. 
• Reference: refer to another chart. 

In addition to the order imposed by coregions and general orderings, an MSC also orders the events 

using two basic ordering rules: 

• The events of an instance are executed in the same order as they are given on the vertical axis 
of the chart from top to bottom. 

• The message-sending event must happen prior to the event of receiving the same message. 

MSC also supports structural design. Generally, the way to combine MSCs is to use a High-level MSC 

(HMSC), where MSC references and other constructs are used to specify their composition. An HMSC 

cannot contain instances, messages or local actions although it may employ conditions. HMSCs only use 

MSC references because the goal of HMSC is to define how the basic MSCs are connected. 

Figure 1. An example of a basic MSC. 

 msc example1 

   i1    i2    i3 

  m0 
  m1 

  m2 

   m3
a 

msc example1; 
i1: out m0 to env; 
i1: out m1 to i2; 
i2: in m1 from i1; 
i2: out m2 to i3; 
i3: in m2 from i2; 
i1: action a; 
i2: out m3 to i1; 
i1: in m3 from i2; 
endmsc; 
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Möbius Framework 

Möbius provides a method by which multiple, heterogeneous models can be composed together, each 

representing a different software or hardware module, component, or view of the system [26]. The 

composition techniques developed permit models to interact with one another by sharing state, events, or 

results. This framework also supports multiple modeling languages and multiple model solution methods, 

including both simulation and analysis. Möbius is extensible, in the sense that it is possible to add new 

modeling formalisms, composition and connection methods, and model solution techniques to the 

software environment that implements the framework without changing existing tool components. 

Möbius defines three basic entities: state variables, actions, and action groups (or groups). State 

variables hold the state of the model, or the state of the modeled system. Actions are the only entities that 

can change the values of state variables, thus the state of the model or the system. Groups contain one or 

more actions called group members.  A group is enabled when at least one group member is enabled. 

However, not all enabled group members can fire. At any time, only one enabled group member is elected 

as the representative that can fire. The hierarchical model construction method is shown in Figure 2.  

Möbius defines an Abstract Functional Interface (AFI). The AFI is the core of the framework because 

it enables models to exchange 

information with other models and 

different solvers. The AFI also 

enables the Möbius solvers to solve 

a model without the knowledge of 

the underlying formalism. Thus, 

hybrid models that consist of 

models from different formalisms 

are solvable.  

The AFI consists of functions 

implemented as C++ virtual methods within the implementation of the C++ classes for Möbius entities. A 

Figure 2 The Möbius framework. 
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formalism in the framework must derive its own classes from these basic abstract classes to implement 

the AFI, i.e., provide their own implementation for those virtual methods. 

3. Stochastic Message Sequence Charts 

In this section, we define SMSC and provide new ordering rules for SMSC. The difference and similarity 

between SMSC and MSC are explained. 

3.1 Definition of SMSC 

We define SMSC based on the language of MSC as follows. An SMSC is an MSC where all events are 

enhanced to behave as real activities by associating stochastic time information with them. The 

stochastic time associated with an activity is the time needed to complete the activity.2 

The term “Event” is 

used to describe something 

that occurs to trigger a set 

of activities. When an event 

is associated with time, we 

call it an “activity.” Activity 

means something that takes 

time to complete. The stochastic time associated with activities can be deterministic, exponential, beta, 

etc. There is no restriction on what type of distribution a stochastic time can take. However, to simplify 

the description, we use the exponential distribution as the default distribution in the rest of this section 

(see Figure 3).  

The MSC language has two types of events: the events in message passing and the events for local 

actions. Also, there are two types of activities: message and local action activities or simply local 

activities. A message in the SMSC language consists of two activities: the activity of sending and the 

activity of receiving a message. A message is represented the same way as in MSC except the message 

                                                 
2 An immediate or instantaneous event is an activity associated with zero time. 

Figure 3. An SMSC example. 

 smsc example1 
i1 i2 i3 

m0(r1, r2)

m1(r3, r4)
m2(r5, r6)

m3(r7, r8) 

a(r0)

smsc example1; 
i1: out m0 to env withrate r1; 
i1: out m1 to i2 withrate r3; 
i1: action a withrate r0; 
i1: in m3 from i2 withrate r8; 
i2: in m1 from i1 withrate r4; 
i2: out m2 to i3 withrate r5; 
i2: out m3 to i1 withrate r7; 
i3: in m2 from i2 withrate r6; 
endmsc; 
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name is now followed by two parameters. The first parameter specifies the time for the sending activity 

and the second defines the time for the receiving activity. For example, message m1 in Figure 3 has two 

parameters: r3 and r4.  r3 specifies the rate of an exponentially distributed random variable that gives the 

amount of time needed to send the message. r4 assigns time to the message receiving activity. Both r3 

and r4 may be global variables so that their values can be easily modified later. The textural 

representation of messages is defined by adding a new keyword withrate as shown in Figure 3. Also, 

note a new keyword smsc is defined to distinguish SMSC from MSC and is used in both the graphical 

and textural representations. Local activities are assigned random time in the same way as messages using 

one parameter.  

3.2 Concept of MSC with SMSC 

The MSC language does have time concepts to represent time passage between two events [31]. But the 

time concepts in MSC are limited to meet the goal of requirement specification. Time is introduced as a 

special event that can be inserted between two consecutive events to represent the time elapse. All other 

MSC events are still instantaneous. The time event represents deterministic time rather than random (or 

non-deterministic stochastic) time. 

The time concepts in SMSC are quite different. SMSC activities are inherently associated with time 

information. There is no special time event defined in SMSC. An SMSC activity can mimic an MSC 

event if the associated time is zero. In such case, the SMSC activity is also instantaneous. The most 

important property of SMSC is that the time associated to the activity can be random time. In most cases, 

random time is required to describe a real system behavior. The goal of defining the SMSC language is to 

use SMSC to do performance analysis although SMSC models may be developed based on the 

requirements specification. 

3.3 Comparing MSC with SMSC 

The SMSC language is different from the MSC because SMSC activities are allowed to be non-

instantaneous. Therefore, SMSC models provide more information about a system than the MSC model. 

However, both of the languages have many similarities. 
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3.3.1 Constructs 

All constructs (instances, messages, local actions, conditions, etc.) defined on MSC are used by SMSC. 

The graphical representation of a SMSC looks the same as an MSC except for the additional parameters 

needed to specify time. As for the textual representation, all the keywords defined in MSC are still valid 

in SMSC. Although new keywords are defined for SMSC, the method and grammar for describing SMSC 

remains the same. 

SMSC and MSC have the same composition operators all of which maintain the same semantics. 

High-level SMSC (HSMSC) is defined in the same way as HMSC. HSMSC organizes SMSC references 

using the same nodes defined on HMSC and the organizational interpretation is also the same.  

Most new keywords deal with time specification except for the keyword smsc, which simply replaces 

the keyword msc. For example, if an activity is associated with exponentially distributed random time, the 

keyword withrate is used in the description and is followed by a parameter that specifies the rate. 

Defining the corresponding keywords and providing the required parameters would enable the 

specification of other distributions. 

3.3.2 Ordering Rules 

SMSC has different ordering rules. Under the new ordering rules, a SMSC imposes a partial order on its 

activities. This partial order is the same as that imposed by an MSC. If all activities are associated with 

zero delay, then the SMSC model is an MSC model. 

There are two assumptions made in MSC for precisely ordering events. The assumption of 

instantaneous events is obvious (i.e., they take no time). If events can last for a period of time, it would be 

quit possible that another event(s) start before the already started event finishes. In this case, what is the 

order of these two events? The assumption that no two events can be executed at the same time requires 

that any two events have a specific order. An event either happens before or after the other. Consequently, 

the execution of events forms a trace that describes system behavior. In SMSC, we relax the first 

assumption (i.e., events may not be instantaneous). As a result, the second assumption does not hold and 

is also relaxed. Activities in SMSC can start or finish at the same time. Moreover, this relaxation of the 

second assumption is more realistic.  
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We have mentioned that activities cannot be ordered. But if we decompose an activity into two events, 

one for the starting of the activity and the other for it’s ending, then we will find a new way to order 

activities. The order of activities can be defined as either the order of starting events or that of the ending 

events. By this definition, the activity ordering may not be unique for an execution trace of such activities.   

Since instances are independent in SMSC, activities are executed concurrently. Even if the starting 

times are different, two activities may finish at the same time because the execution time is a random 

variable. Therefore, it is possible that two events happen at the same time. If two events happen at the 

same time, they must be treated as if they can be in any order. We will show later that these ambiguities 

in ordering activity events will not prevent us from defining the partial order as the same defined for 

MSC. There are five rules for the ordering of activities and activity events: 

1) The event of starting an activity must happen before the event of finishing the same activity.  

2) Activities attached to an instance are executed sequentially in the same order as they are given 
on the vertical axis from top to bottom. An activity can only start after the previous one has 
finished. 

3) The activity of sending a message must finish before the activity of receiving the same message 
can begin. 

4) Activities in a coregion can happen in any order, but their execution must abide by rule 1. 

5) If general orderings are used, they are treated as messages in terms of ordering these 
activities. In other words, the activity pointed to by a general ordering symbol can only start 
after the activity from which the general ordering originates has finished. 

The first rule describes how to order the two events (start and finish) in an activity. Obviously, the 

starting event should always happen before the ending event. The second rule covers the ordering of 

activity events associated with the same instance. If each activity is treated as two consecutive events, the 

ordering of these events is the same as that defined for MSC.  

The third rule is for ordering events in a message. The order of activities of different instances can be 

derived from this rule. A message includes two activities, and hence four events: the event of starting to 

send the message (SS), the event of starting to receive the message (SR), the event of finishing the sending 

of the message (FS), and the event of finishing the receiving of the message (FR). The precise restriction 

for their order is that SS must happen before SR, while FR must happen after FS. In other words, a 

message must be sent before it can be received, and the sending of the message must have finished before 
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the receiving of it can finish. However, we define a stricter rule: the sending of a message must have 

finished before the receiving of it can start. This rule is to prevent a message from being completely 

received before the end of sending the message has not occurred. If we allow the activity that receives a 

message to start before the completion of the activity that sends the message, we cannot guarantee that the 

end of receiving the message occurs after the completion of sending the message because both activities 

are associated with random time.  

Why must the activity of sending a message finish before the activity of receiving the same message 

can begin? 

• If the receiving activity can start before the message has been sent, then it is possible the 
receiving activity finishes before the sending activity finishes since the receiving activity takes 
random time to complete. We cannot guarantee it finishes after the sending activity has finished. 

• This restriction also comes from implementation in Möbius. SMSC activities are represented by 
Möbius actions. Whether an action is enabled depends on the current system state. And the 
system state can change only after the completion of an action. When sending a message in 
SMSC, the sending activity can only cause system state to change after it completes. Before the 
completion of the sending activity, the system has not evolved to the new state in which the 
receiving activity can be enabled.  

The fourth and fifth rules are defined for ordering events in a coregion or for being controlled by 

general orderings. The interpretation is straightforward. Under these rules (i.e., using either the order of 

starting or of ending events as the order of activities), the order imposed by an SMSC is sure to comply 

with the partial order imposed by the corresponding MSC if timing information is removed. Therefore, an 

SMSC imposes the same partial order on its activities as an MSC does on its events. This result is mainly 

due to the strict ordering rules defined for messages and general orderings in SMSC. Although we may 

have two different orderings for activities’ starting events and ending events, both of the orderings will 

comply with the partial order imposed by the corresponding MSC. Any two activities that can be ordered 

differently must correspond to the events that have undefined order in the corresponding MSC.  

3.3.3 Traces versus Processes 

An MSC specifies a set of valid traces that the system can take. If we define the sequence of activities as a 

trace, an SMSC specifies a set of valid traces the same as an MSC. In addition, an SMSC also specifies a 

stochastic process. The main difference between the MSC and SMSC languages is that SMSC defines a 

stochastic process while MSC does not.  SMSC can describe the system behavior more precisely than 
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MSC by providing users with more information. The stochastic process enables users to do performance 

analysis about the system. This is the reason we extend MSC to SMSC.  

4.  Integrating SMSC into the Möbius Framework 

The SMSC language is capable of performance modeling. Since the Möbius tool supports multi-

formalism modeling, integrating SMSC into Möbius not only provides a tool for solving SMSC models, 

but also enables SMSC model to interact with models from other formalisms made available by Möbius.  

4.1 Problem Definition 

Möbius requires that any formalism in Möbius implement the AFI and describes its model based on the 

basic Möbius entities. To build the SMSC formalism into the Möbius tool would require that SMSCs be 

decomposed into a set of state variables and a set of actions.  The state changes and the ordering of action 

firings are determined by the structure of the SMSC model.  Therefore, before using Möbius to solve an 

SMSC, the following problems must be addressed: 

1) How to define SMSC states and the corresponding state variables, and 

2) How to define SMSC actions. 

4.2 Identifying State Variables in SMSCs  

To define the state of an SMSC, we first examine its components to see what information is necessary to 

specify state. An SMSC contains a number of independent instances. The instances send messages to each 

other and/or perform some local activities. SMSC may contain conditions that govern the execution of 

some activities. Local activities can also perform operations on local or global data. These components 

contain the information that describes the system state. 

Instance state 

The state of an instance reflects which activity has been executed. Since an instance imposes a sequential 

execution order on its activities, it is important to keep the information about the execution of activities to 

ensure their sequential order. Initially, the instance is in a state that no activity has been executed. After 

executing the first activity, the state of the instance evolves to a new state that reflects the fact that the 

first activity has been executed. This process goes on until the last state has been reached, which shows all 
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activities have completed. 

Conditions 

In the MSC language conditions represent system state. Therefore, conditions are good candidates for 

state variables. Depending on how many states a condition represents, the type of the state variable for a 

condition can be either Boolean, integer, or double. 

Data 

SMSC can also perform operations on data just as MSC does. Data defined on SMSC are also state 

variables. The change of the data value represents a state change in the model. The type of the state 

variable for a data member is the same as the type of the data member. 

Shareable vs. Non-shareable State Variables 

Möbius uses the concept of state sharing to join models from the same or different formalisms. If a state 

variable is shared with other models then they can also change the value of the state variable. The change 

of value represents the state change. Therefore, the behavior of the model is affected by the behavior of 

other models.  

Not all the state variables defined are shareable. For example, if the state variable defined for an 

instance is shared with other models, the increase of the state variable’s value by other models may cause 

some actions to be considered completed even though they have not yet been executed. This is referred to 

as state jump. Whether the state jumps ahead or back, the sequential execution order will be disturbed. 

Therefore, state variables from instances are not shareable. Conditions and data will not affect the 

sequential order and hence these state variables are shareable. 

4.3 Identifying Actions in SMSCs 

By definition in the Möbius, actions are the only entities that can change the system state by changing the 

values of state variables. Thus, any components in SMSC that can change the value of state variables will 

give us actions. These components include local activities, message activities, and setting conditions.  

Local Activities 

Local activities can perform data operations and the completion of an activity must also increment the 

state variable that represents the instance to which the activity is attached. Thus, local activities are 
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Möbius actions. If data operations are defined on the local activity, the execution of this local activity 

must also change the state variable representing the data. The execution time distribution for the action 

coming from a local activity takes the same distribution function as that of the local activity.  

Message Activities 

A message consists of two activities. The sending activity is performed by the instance that sends the 

message, and the activity, which receives that same message, performs the receiving activity. Data 

operations are also defined for message exchange. When the activity of sending the message completes, it 

must adjust the state variable to reflect the fact that the message has been sent. Likewise, the completion 

of receiving a message changes the state of the instance that receives the message. Therefore, a message 

can be represented by two Möbius actions. 

Setting Conditions 

Conditions have two forms: setting conditions and guarding conditions. Setting conditions puts the 

system in a particular state. Guarding conditions control the system behavior by restricting the execution 

of certain activities. The setting conditions are Möbius actions since they change the system state. 

Figure 4 shows an example of an SMSC and its corresponding state variables and actions. Parameters 

r1, r2 and r3 are the rates associated with activities. Action rm1 corresponds to the activity of sending the 

message m1, and sm1 corresponds to the receiving of message m1. Action la is for the local activity a. 

The same naming rules apply to other action names. The state variables s1, s2 and s3 represent the state 

of instances i1, i2, and i3, respectively 

4.4 Solving SMSC Models 

Once the SMSC models are 

described using classes 

derived from the Möbius 

base classes, we can then 

solve the models using 

Möbius built-in solvers to 
Figure 4. State variables and actions from an SMSC. 

 
smsc example2 

i1 i2 i3 

 m0(r1, r2) 
m1(r1, r2) 

 m2(r1,r2) 

  m3(r1,r2)
a(r3) 

State variables: 
s1: int; 0 to 4; 0 
s2: int; 0 to 3; 0 
s3: int; 0 to 1; 0  

 
Actions: 

sm0(r1), sm1(r1), la(r3), 
rm3(r2) 
rm1(r2), sm2(r1), rm3(r1)
rm2(r2) 
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extract estimates or predictions (e.g., reliability, availability, throughput, responsiveness, or other 

stochastic parameter). 

4.4.1 State Space Generation Algorithm 

The Möbius State Space Generator consists of several libraries, which contain precompiled functions. 

These functions are linked with user-defined models, such as SMSC models, to generate an executable 

model, which is then used to generate the model state space. The State Space Generator only uses the 

Möbius AFI to interact with the model (see [32] for details). Once the state space is generated, various 

analytical solvers are applied to solve the model for the desired performance measures. State transition 

and reward calculations are recorded in a data structure that represents the SMSC model state space. 

4.4.2 Model Complexity 

The complexity of an SMSC model depends not only on the number of instances, messages and 

conditions, but also on the structure of the model. The structure of the model is the way that instances, 

messages, conditions and other model constructs are organized together to represent a certain system. 

Naturally, if the SMSC model contains a large number of instances and messages, this implies a higher 

complexity. However, sometimes the structure of the SMSC model plays a more important role in 

deciding the model complexity. The state space (size) is used to measure the complexity given that the 

model is to be solved analytically and has a finite number of states. 

There are two types of constructs that affect the number of the states. The first type of construct can 

increase the number of states, while the second can cause a reduction. The SMSC coregion construct 

belongs to the first type. A coregion specifies a number of activities that can run in parallel or in any 

sequential order and all possible interleavings must be considered (giving rise to many more states). The 

second type of construct includes messages and general orderings. Messages and general orderings 

impose restrictions on the sequential order in which the activities can take place, which effectively 

eliminated certain interleavings resulting in fewer states. 
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(b) (a) 

 
 

smsc two_inst_1 

i1 

a1(r0) 

a2(r1) 

a3(r2) 

i2 

b1(r0) 

b2(r1) 

b3(r2) 

 
 

smsc two_inst_2 

i1 

a1(r0) 

a2(r1) 

a3(r2) 

i2 

b1(r0) 

b2(r1) 

b3(r2) 

(b) (a) 

 
 

smsc one_inst_1 

i1 

a1(r0) 

a2(r1) 

a3(r2) 

 
 

smsc one_inst_2 

   i1 

a1(r0) 

a2(r1) 

a3(r2) 

For example, Figure 5(a) shows an 

SMSC with one instance and three 

local activities. This SMSC has 4 

states: the initial state and 3 additional 

states that represent the completion of 

activities a1, a2, and a3, respectively. 

Since activities a1, a2, and a3 can 

only happen in the given order, the 

completion of a later activity implies the completion of the earlier activities, i.e., the finish of a2 means 

the finish of a1 and the finish of a3 implies the finish of both a1 and a2. If we add a coregion, as 

illustrated in Figure 5(b), to encapsulate these activities, then activities a1, a2, and a3 can execute in 

parallel. The resultant SMSC gives 8 states because there is no imposed order and thus, activities happen 

in any order. Therefore, coregions increase the number of states.  

To show how messages or general orderings can reduce the state space, we first construct the SMSC 

shown in Figure 6(a). We define two instances, each of which has three local activities. No message is 

exchanged between them. No general ordering is defined to restrict the execution order between activities 

on different instances. Although 

activities of each instance must take 

place in the specified sequential order, 

activities between the two instances 

can actually execute in parallel. For 

each instance, the state variable can 

take four different values; therefore it 

has 4 states. Thus, two such instances 

yield 16 states. Now we define a 

general ordering between the first 

activities of both instances i1 and i2 (see Figure 6 (b)). This general ordering specifies that activity b1 can 

Figure 5. State space without/with coregions. 

Figure 6. State space without/with general orderings. 
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only take place after activity a1 finishes. This additional restriction on the execution of activities makes it 

impossible for activities b1, b2 or b3 to occur before the completion of the activity a1. Consequently, as 

shown in Figure 6 (b), the number of states is reduced by 3. Therefore, general orderings that provide 

additional restrictions can reduce the state space.  

In addition to the aforementioned constructs, SMSC model composition has also a great impact on the 

state space. For example, if an SMSC M1, which has S1 number of states, is vertically composed with 

another SMSC M2, which has S2 number of states, and the composed SMSC is called M3, the number of 

states of M3 is not necessarily the sum of S1 and S2.  Usually, that number is greater than the sum of S1 

and S2 but less than the worst case, the product of S1 and S2. Therefore, model composition increases the 

number of states that the modeled system can take. 

5. Example: Modeling A Communication System 

We consider a simple system with two computers connected via cable. The processes running on one 

computer send files to those running on another. The communication protocol used by the data link layer 

is the stop and wait protocol [33]. The sending and receiving processes are modeled as Stochastic Activity 

Networks (SANs)[27]. The stop and wait protocol is modeled using SMSCs. 

5.1 Model the Stop and Wait Protocol 

The stop and wait protocol is the simplest communication protocol that can coordinate the communication 

between two entities that run at different speeds and have limited buffer space. The sender sends out a 

data block and then waits for the receiver to acknowledge the receipt of the data. Until obtaining the 

receivers’ acknowledgement, the sender cannot start sending the next block. This prevents a fast sender 

from flooding a slow receiver with limited receiving buffers.  
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 smsc done; global int rbuf; 

    sender     receiver 

data(r1, r2) 

pack(r3,r4) 

   rbuf++ 

 smsc dataerr; 

     sender     receiver 

data(r1, r2) 

nack(r3,r4) 

 smsc datalost; 

    sender    receiver 

data(r1, r2) 

delay(r5) 

 smsc acklost; 

      sender     receiver 

 data(r1, r2) 

delay(r5) 

(a) (b) 

(c) (d) 

If the stop and wait 

protocol is used on an 

unreliable channel (i.e., 

data in transmission may 

be damaged due to errors 

that occur in the channel), 

then a retransmission 

technique must be used. 

The sender starts a timer 

after transmitting a data 

block.  If the timer goes off 

before it receives the 

acknowledgement, the 

data is considered lost and 

the sender retransmits the same data block. Upon receiving a data block, the receiver first checks if the 

data is correct, and if correct, a positive acknowledgement is sent back. Otherwise, a negative 

acknowledgement is sent back. The receiver may receive duplicated data if the acknowledgement is lost. 

In our example system, we assume an unreliable channel is used. To model the stop and wait protocol, we 

need four SMSCs. Each describes a scenario for their behavior using this protocol (see Figure 7). 

Figure 8 provides an additional SMSC, 

GetFrame, to specify how the sender 

acquires data from the sending buffer. This 

SMSC serves as the protocol starting point. 

The full behavior of this protocol is described 

by combining these five SMSCs. Figure 9 

shows the composition methods. The 

Figure 7. The 4 scenarios of the Stop and Wait protocol. 

Figure 8. The GetFrame SMSC. 

 smsc getframe; global int sbuf, rbuf; 

      sender      receiver 

getframe 
sbuf--; 

when sbuf>0 

when rbuf<max 
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GetFrame SMSC describes the behavior of the sender when 

it fetches a data frame from the sending buffer. After a data 

frame is acquired, the execution proceeds into one of four 

alternative scenarios. The SMSC done represents the success 

of data exchange. If done is chosen and has finished, the 

execution goes back to GetFrame. The SMSCs done and 

GetFrame form a loop. If done is not selected as the 

follower of GetFrame within this execution, the execution 

has to loop among the four scenarios indefinitely until the SMSC done is selected.  

5.2 Modeling the Data Sending and Receiving Processes 

The data sending and receiving processes are modeled as SANs because they are available in the Möbius 

tool and are suitable for modeling such processes. The SAN model for the sender (i.e., data sending 

process) is shown in Figure 10. A token in the place sdata represents a large block of data, for example a 

file ready to transmit. The SAN activity depart fires, and the output gate split defines the number of 

tokens that are put into the place sblks, which represents the block buffer of the sender. CreateFrame can 

fire if at least one token exists in sblks and the predicate of the input gate BufNotFull evaluates to true 

(i.e., indicating the sending buffer is not full). Each time CreateFrame fires, a token is deposited into the 

place sbuf. Each token in sbuf represents a data frame that will be sent using the stop and wait protocol 

Figure 9. The model of the Stop and 
Wait protocol.  

Figure 10. The SAN of the sender. Figure 11. The SAN of the receiver. 

sbufBufNotFull 

depart 
sdata 

CreateFrame 

split sblks
rbuf 

combine 

rdata 

rblks 
DecodeFrame CanCombine 

GetFrame 

done

dataerr acklost 

datalost



 17

sender 
(SAN)

receiver 
(SAN)

protocol 
(SMSC) 

join 
(Möbius) 

(i.e., subf represents the sending buffer). 

The SAN model for the data receiving process or the receiver is shown in Figure 11. The procedure of 

processing the received frames is the inverse of what is done by the sending process.  

5.3 A Heterogeneous Model of the Whole System 

The heterogeneous model can be constructed using the Möbius Join and Replicate mechanism as shown 

in Figure 12. In Figure 12, the sender and receiver refer to the SAN models of the sender and receiver. 

The word protocol refers to the SMSC model for the stop and wait protocol.  

Before the models can be joined, the shared state 

variables must be defined. The Möbius join construct uses 

the shared state variable to merge different models together 

(from either the same or different formalism(s)). In our 

example, rbuf and sbuf are shared state variables. In the 

SAN model, places rbuf and sbuf are translated into state 

variables for the Möbius representation. The global data rbuf and sbuf in the SMSC are also translated 

into state variables. These state variables are shareable. In fact, they represent the same system 

components in different models. 

5.4 Experimental Result 

To show that Möbius can solve an SMSC model, we defined one reward variable to measure the time that 

the system spends handling error data. Whenever an error occurs in the channel, the sender must 

retransmit the lost or distorted data frame. The sender may delay for a period of time before it starts to 

retransmit the data frame if either the data frame or the acknowledgement frame is lost. This period of 

time is considered the error processing time. We are interested in how the channel error probability and 

the delay time impact the error processing time. The result of this analysis is shown in Figure 13. 

Examining Figure 13, we see that the percentage of time processing errors is roughly proportional to 

the channel error probability. A higher error probability causes more time spent processing error 

messages. Error processing time is also affected by delay time. Longer delay times imply that the sender 

Figure 12. Composing the system model. 
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ould have to wait for a longer time to retransmit data. A longer delay time results in a higher percentage 

f time that the system spends processes errors (note that rate is defined as the inverse of time and higher 

ate means shorter delay time), i.e., wasted bandwidth. 

. Conclusion and Future Work 

he Message Sequence Chart formalism and the Möbius multi-formalism modeling framework were 

tudied. Based on the MSC formalism, we defined a new formalism – Stochastic Message Sequence 

hart, an extension to the MSC formalism. SMSC can be used to describe system behavior in the same 

ay as the MSC language. Furthermore, SMSC models contain more information about the system than 

he corresponding MSC models. By associating each activity with a stochastic execution time, the SMSC 

odels specify an underlying stochastic process. System performance measures that cannot be derived 

rom MSC models can be studied using the newly defined / validated SMSC language. 

To integrate SMSC into Möbius, we defined the SMSC state variables and SMSC activities, which 

orrespond to the Möbius state variables and actions, respectively. The C++ classes were implemented 

sed to specify SMSC models. The vertical and alternative model composition methods specified in the 

Figure 13. Error processing time of the system. 
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SMSC formalism can be realized using the C++ classes, namely, vertical composition and alternative 

composition. Loop is a special vertical composition and is also realized within the Möbius framework. 

The next step in this work would be to implement the UI (user interface, a SMSC graphical editor) 

within the Möbius framework. The UI should be implemented in Java to make it platform neutral and will 

enable users to specify SMSC models within the Möbius framework. Eventually, the graphical or textural 

SMSC models are complied and linked with the Möbius libraries to generate an executable model and the 

model is either simulated or solved analytically.  

Some constructs of the SMSC language, including inline expressions and horizontal compositions, 

have not been defined within the Möbius framework. Those constructs merely provide shortcuts when 

specifying the system behavior and do not contribute to the fundamental translations we have defined. 

However, they should be expressed using the defined SMSC classes and further research will reveal how 

this can be accomplished. Another area of future work is to define the action-sharing method for SMSC. 

Instead of sharing only state variables, an SMSC model may be composed with other models by also 

sharing activities/actions.  
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