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Abstract 
This paper presents a novel algorithm for identification 
and functional characterization of “key” genome 
features responsible for a particular biochemical process 
of interest.  The central idea behind our algorithm is that 
individual genome features (or their combinations) are 
identified as significant “key” features if the 
discrimination accuracy between two classes of genomes 
with respect to a given biochemical process is sufficiently 
affected by the inclusion or exclusion of these features.  
In this paper, genome features are defined by high-
resolution gene functions. The discrimination procedure 
utilizes the Support Vector Machine (SVM) classification 
technique. Changes in classification accuracy in 
response to addition or deletion of genome features 
measure the significance of these features. The 
application of this SVM-based feature identification 
algorithm to the oxygenic photosynthetic process resulted 
in a total of 126 highly confident candidate genome 
features.  They cover not only dominant genome features 
(that always occur in oxygenic photosynthetic genomes 
but not in the other genomes) but also weak yet 
complementary genome features (their combinations 
make unique dominant genome features).  While many of 
these features are well-known components in the 
oxygenic photosynthetic process, others are completely 
unknown, even including some hypothetical proteins.    It 
is obvious that our SVM-based feature identification 
algorithm has the capability to discover novel genome 
features related to a targeted biochemical process.     
 
Keywords: key genome features, oxygenic 
photosynthetic process, genome comparative analysis, 
support vector machines 
 

1. Introduction 
 
Genomes contain hundreds to thousands of genes; 

many of them encode multi-component, multi-faceted 
protein machines that function in a highly coordinated 
way for accomplishing various biochemical processes [1, 
2].  These biochemical processes cover all aspects of 
highly specialized yet coordinated (in structures, 
metabolic and regulatory networks) life supporting 
systems developed over millions, even, billions of years 
of evolution and speciation [3].   As a consequence, host 
organisms can survive and prosper in a diversity of 
hostile environments.  Identification of “key” genes that 
are responsible for these processes is an essential step 
toward understanding the genetic and biochemical basis 
of entire life processes in general, and biologically 
important biochemical processes related to sustainable 
sources of energy, environmental management, carbon 
cycle and sequestration, and human health protection in 
particular [4].  However, such a task presents a 
tremendous challenge for both experimental and 
computational scientists because of the complexity of 
gene networks involved in these processes.  For 
experimental scientists, it is prohibitively expensive and 
labor-intensive to knock-out all possible genes to 
determine their effects on particular cellular processes 
[5].   Function redundancies due to duplicated genes and 
alternative pathways may cause further complications in 
this analysis.  For computational scientists, the evaluation 
of all possible candidate genes and their combinations 
presents a huge computationally infeasible challenge. 

 
Current approaches to the problem of identifying 

“key” genes are based on genome comparative analysis, 



 

 

one of several sprouting and highly efficient 
methodologies [6, 7, 8].  Advances in high-throughput 
genome sequencing have made it possible to use such 
approaches.  At the time of this writing, approximately 
126 genomes (16 Archaea, 93 Eubacteria, 17 Eukarya) 
have already been sequenced and made public 
(http://wit.integratedgenomics.com/GOLD/).  These 
genomes correspond to organisms of a tremendous 
biodiversity.  They can be grouped into various genome 
classes such as Eubateria vs. Archaea, pathogens vs. non-
pathogens, thermophiles vs. mesophiles, aerobic vs. 
anaerobic organisms, oxygenic photosynthetic vs. non-
oxygenic photosynthetic organisms.  The comparative 
analysis of these genome classes opens an opportunity to 
identify genes that are highly specific to these processes, 
thus, improving our understanding of their genetic and 
biochemical basis.   

 
The simplest and quickest strategy for genome 

comparative analysis is to directly compare genome 
sequences.  This method has been utilized for 
understanding the genetic basis of pathogenesis [9, 10, 
11, 12].  The underlying principle is that if some genes 
occur in one genome (e.g. a pathogenic organism) but are 
completely absent in the other (e.g. a closely related, but 
non-pathogenic organism), it can be assumed that these 
genes may be responsible for targeted biochemical 
processes.  However, this strategy is somewhat simplistic 
because the analysis does not have the capacity to 
differentiate between genes that make a decisive 
contribution to the cellular processes and those genes that 
just occur by chance.  Furthermore, when applied only to 
two closely related genomes, the approach cannot be 
extended to multiple genomes with heterogeneous 
(environmental or evolutionary) backgrounds.   

 
Ortholog-based genome comparative analysis is 

another strategy for the whole genome analysis that is 
applicable to multiple genomes [7, 13, 14].  Orthologs are 
defined as the exact functional counterparts in different 
genomes that have arisen from speciation [15].  This 
approach has been used to identify evolutionarily stable 
core gene sets for Archaea genomes, for genes with 
conserved functionalities among microbial genomes, and 
for genes specific to photosynthetic prokaryotes [7, 
13,14].  In particular, the occurrences of orthologous 
genes among experimental genomes are evaluated to 
determine if these genes are evolutionarily conserved or 
specific to given genomes.  This approach is also over-
simplified.  However, it is not necessarily true that all 
important gene components for certain biochemical 
processes are the ones that always occur only in the 
genomes with these processes.  As a result, this approach 
has limitations for identification of genes essential for 
specific biochemical processes. 

 
This paper presents a novel method for identification 

of key genes responsible for a particular biochemical 
process of interest. The central idea behind our method is 
that individual genome features (or their combinations) 
are identified as significant if the discrimination between 
two classes of genomes with respect to a given 
biochemical process is sufficiently affected by their 
addition or removal. The genes corresponding to 
significant features are reported as the key genes for this 
process. In this paper, genome features are defined by 
high-resolution gene functions organized into a 
hierarchical set of knowledge-driven protein function 
groups and families [16]. The discrimination procedure 
utilizes the Support Vector Machine (SVM) classification 
technique [17].  Changes in classification accuracy in 
response to the addition or deletion of genome features 
are significance measures for these features.  

 
We apply the proposed method to identification of 

key genes responsible for the oxygenic photosynthetic 
process.  Understanding the genetic basis of this process 
is of considerable interest due to its extreme importance 
for transformation of solar energy into other forms of 
energy available to all living organisms.  We show that 
our SVM-based feature identification algorithm has the 
capability not only to identify the well-known 
components in the oxygenic photosynthetic process, but 
also to discover new and novel candidate genome 
features that are completely unknown, even hypothetical 
proteins. 

 
 

2. Materials and methods 
 

This section describes the algorithm used to identify 
genes that are critical for a given biochemical process of 
interest. 

 
2.1. Key genome features identification problem 
 

Let P  be a target biochemical process. Assume that 
a set },...,,{ 21 nxxxX =  of n  genomes is partitioned into 

two classes: a positive class +
PX  of genomes that have 

the biochemical process P  and a negative class −
PX  of 

genomes in which P  is absent. For example, if P  is an 
oxygenic photosynthetic process then +

PX  might include 
genomes such as Prochlorococcus marinus MED4, 
Prochlorococcus marinus MIT9313, Synechococcus sp. 
WH8102, Nostoc sp. PCC7120, Anabaena sp. PCC7120,  
Thermosynechococcus_elongatus BP1, and Synechocystis 
PCC6803 and −

PX  might include genomes such as 



 

 

Saccharomyces cerevisiae,   Thermotoga maritime, 
Shewanella,  Streptococcus pyogenes SF370.  Let 

},...,,{ 21 mfffF =  be a set of m  genome features and 
F2  be its power set, which includes all possible 

combinations of genome features from F . For instance, 
F  might consist of all possible protein functions or 
protein domains. The key genome features identification 
problem for process P  is the problem of identifying the 
set F

PS 2⊆ of all genome features or their combinations 
that contribute to or are responsible for the process P  in 
any of the genomes from +

PX . A key genome feature is 
any feature from PS . There are three major steps in 
addressing the key genome features extraction problem: 

1. Given a process P  and a set of genomes X , 
define a set F  of genome features. 

2. Identify the set F
PS 2⊆  of key genome 

features. 
3. Validate that elements from PS  are key 

genome features or their combinations. 
 
For the remainder of this paper, we let P  denote 

specifically the oxygenic photosynthetic process and let 
X  include 52 genomes partitioned into two classes: 7 

genomes from +
PX  and 45 genomes from −

PX . 
 

2.2. Genome features 
 

We refer to a set F  of genome features as a set of 
high-resolution protein function groups (PFGs), as we 
did in an earlier study [16].  They were automatically 
generated from the analysis of 111,046 protein sequences 
in the Swiss-Prot [18] database, version of 6/25/2002, 
and this was followed by manual curation. This resulted 
in m=21,656 PFGs, or genome features.  These groups 
often represent the smallest biochemical or evolutionary 
units encoded by single genes.  They also represent 
universal symbols for given functions that occur in 
multiple genomes.  Some of these groups are broadly 
shared by species across their phylogenetic tree or by 
species that live in different environmental niches, while 
others are species-, environment- or biochemical process-
specific.  As a result of function annotation of 52 
genomes, the PFGs can be utilized as a common genome 
feature system for the genome comparative analysis. 
PFGs are further organized into 2157 protein families.   

 
Every genome },...,{ 521 xxXxi =∈  either has a 

genome feature },...,{ 656,211 ffFf j =∈  with some 
confidence value ijv  ( 0≠ijv ) or does not ( 0=ijv ). If 
there are protein sequences in genome ix  that belong to 

the PFG jf , then ijv  equals the highest value among the 
confidence values of protein sequence assignments to the 
PFG jf . Otherwise, 0=ijv . The confidence values ijv  
are arranged into a genome matrix. A genome matrix 

mnV ,  is a matrix of n  genome vectors, each with m  
vector coordinates corresponding to PFGs. 

 
2.3. An algorithm for identification of key 
genome features 
 

We begin with a biochemical process P , a set of 
genomes X , some with and some without P, and a set of 
genome features F . A set F

PS 2⊆ of key genome 
features can be identified by a brute-force approach, 
namely by evaluating all possible combinations of 
genome features whether they sufficiently affect 
discrimination between the two sets of genomes.   
However, this approach is feasible only for a small 
number of genome features. Even for 10=m  features, 
there are 102  combinations to try. Since the number of 
possible genome feature combinations grows 
exponentially with the number of features, a heuristic 
computational algorithm for key genome features 
identification is proposed. 

  
The underlying assumption behind the algorithm is 

that individual genome features can be identified as key 
features if the discrimination between two classes of 
genomes with respect to P  is sufficiently affected by the 
addition or deletion of these features. We use Support 
Vector Machines, a supervised classification technique 
[17, 19], as the discrimination procedure. Changes in 
classification accuracy in response to the 
deletion/addition of genome features measure the 
contribution of these features to the process P .  

 
In brief, the SVM-based feature identification 

algorithm pursues feature addition and deletion in a 
hierarchical manner.  First, the set −+ ∪= PP XXX  of 52 
genomes, partitioned into a positive class (7 genomes) 
and a negative class (45 genomes) with respect to the 
oxygenic photosynthetic process P , is used as a training 
set by the SVM classifier. The rows of mnV ,  begin with 
the full m -dimensional genome feature space. The leave-
one-out error of classification performance is assessed 
(see the “Performance measures” section). If the error is 
below some cutoff value (10% is used as a default), then 
it can be assumed that the set F  of genome features is 
sufficient for classification. In this case, the SVMs are 
able to capture an internal structure in the training data. 
Otherwise, either the set F  of genome features needs to 



 

 

be redefined or a forward-feature-propagation procedure 
should be explored (see below). 

 
2.3.1. Identifying target protein families. Next, the 
algorithm selects target protein families (each with 
several PFGs) for more detailed analysis. Since the size 
of the search space is enormous, namely 656,212 , only the 
target protein families are used to make identification of 
key genome features in that space computationally 
feasible. Each individual protein family k  defined by a 
subset FFk ⊂  of PFGs is evaluated for providing a 
small (below some threshold value; 4% is used as 
default) leave-one-out classification error by using the 
SVM classifier on a set of genomes X  feature space kF .   
This increases the opportunity of identifying weak 
candidates for key genome features in the subsequent 
feature extraction process by reducing the chance of 
multiple candidate features confounding each other. 

 
2.3.2. Identifying key protein function groups within 
the target protein families. Finally, the algorithm 
identifies key PFGs (or their combinations) for each 
target protein family selected in the previous step using 
the following exhaustive search. For each PFG or 
combination of PFGs in a protein family, its contribution 
to the overall performance of the SVM-based classifier is 
measured. Again, the underlying assumption is that if 
these genome features can make a significant difference 
in the performance of the learning system, then it is 
highly possible that they represent features that can be 
considered key for the biochemical process of interest.   

 
Two approaches are used to measure the contribution 

of individual genome features or combinations of 
features: backward-feature-propagation and forward-
feature-propagation. With backward-feature-
propagation, an individual genome feature kFf ∈  is 
removed with replacement from a genome matrix defined 
for a target protein family k  selected in the “Identifying 
target protein families” section. The leave-one-out 
classification error of the SVM classifier applied to a set 
of genomes X  in k -dimensional feature space is 
calculated.  The larger the degradation of performance is, 
the greater the contribution of the removed feature to the 
process P  can be assumed. Once the highly contributing 
individual genome features are selected (based on a 
threshold value; 5% degradation is a default), the 
combined contribution of selected features to the process 
P  is evaluated after all the selected features are 
removed.  

 
With the forward-feature-propagation procedure, the 

genome matrices used for the SVM-based classification 
are built bottom-up from the individual PFGs within each 

target protein family. Initially, every genome matrix 
corresponding to a target protein family k  consists of 
exclusively one PFG. The contribution of this PFG is 
assessed similarly based on the performance of the SVM 
classifier. Once the highly contributing individual protein 
function groups are selected (based on a threshold value; 
80% performance accuracy), an individual pair of the 
selected protein function groups is included into a 
genome matrix.  The contribution of the pair to the 
biochemical process P  is evaluated.  

 
2.4. Validation of key genome features 
 

To provide preliminary evidence for the 
relationships between key genome features and given 
biochemical processes, we investigate the co-occurrence 
(or clustering) of gene corresponding to key genome 
features on the genomes.  The underlying assumption is 
that if these genes are clustered together on the genome 
as well as with some well-known gene components of the 
biochemical process, it is very likely that these key 
genome features are related to this process (by function 
coupling) [20, 21].  
 
3. Results 

 
3.1. Discrimination of genome classes using 
protein function groups as genome features 
 

A comprehensive assessment of the leave-one-out 
error has shown that our SVM-based classification 
algorithm can achieve maximum classification 
performances on the genome data (Table 1).  All five 
measurements reach the highest value of 1 using a 
polynomial kernel function of any power up to 4 as well 
as using a radial kernel function. A reasonably good 
performance but with much smaller number of support 
vectors (48% of the total size of the training set) is 
attained for the polynomial kernel of power 6.   
Obviously, our decision to use the protein function 
groups as our genome features is the right choice for 
discrimination of genomes into two classes based on the 
oxygenic photosynthetic process.   



 

 

 
Table 1.  The performances of SVM on genome data 

Kernel SV (%) ROC Fp Fn Tp Tn SP SN CC CS 
I. Genome data 

Plynm1 94.20% 1 0 0 7 45 1 1 1 1 
Plynm 2 82.70% 1 0 0 7 45 1 1 1 1 
Plynm 3 80.80% 1 0 0 7 45 1 1 1 1 
Plynm 4 80.80% 1 0 0 7 45 1 1 1 1 
Plynm 5 78.80% 0.99 1 0 7 44 0.88 1 0.92 0.98 
Plynm 6 48.10% 1 0 1 6 45 1 0.86 0.92 0.98 
Plynm 7 38.50% 0.71 4 6 1 41 0.2 0.14 0.06 0.81 
Plynm 8 34.60% 0.74 15 4 3 30 0.17 0.43 0.07 0.63 
Radial 100% 1 0 0 7 45 1 1 1 1 

Note: Plynm k, polynomial kernel function of degree k; SV, Support vectors; Fp, False positives; Fn, False negatives; Tp, 
True positives; Tn, True negatives; SP, Specificity; SN, Sensitivity; CC, Correlation co-efficient and CS, Cost savings; 
ROC, A score of the normalized area under a curve that plots true positives as a function of false positives for varying 
decision thresholds. Total number of genomes is 52. 
 
3.2. Identification of target protein families  
 

The assessment of SVM performance on the family-
based genome data demonstrates that only a small 
proportion of the protein families have a differentiation 
capability for the genome classes.  A total of 2172 
protein families are examined.  Less than a quarter of the 
protein families (510 out of 2170) provide classification 
performance under a training ROC cutoff of 0.5. 
Similarly, less than 3.5% (72 out of 2172) have 
classification performance under a training ROC cutoff 
of 0.96.  This result indicates that the majority of key 
genome features will be covered within 510 protein 
families at a confidence of 0.5 (training ROC) and within 
72 protein families at a confidence of 0.96 (training 
ROC).  

 
3.3. Identification of key genome features within 
the target protein families  
 

For the purpose of demonstrating the efficacy of our 
SVM-based feature extraction algorithm, protein families 
with confidence of 0.96 or greater (training ROC) are 
chosen as our target protein families.  Two approaches 
are used to identify the key genome features (i.e., protein 
function groups) in these families: backward-feature-
propagation and forward-feature-propagation (see 
materials and methods for more details).  They are 
applied in a coordinated way so that our algorithm can 
achieve a maximum capability to identify candidate 
genome features responsible for the biochemical process 
of interest. 

 

The backward-feature-propagation approach can 
recognize both single key genome features as well as 
combinations of genome features that make a key 
genome feature.  A total of seventy-six key genome 
features are identified. The classification accuracy drops 
by at least 5% on the removal of these genome features 
from the genome matrix. In some cases, however, the 
backward-feature-propagation approach fails to detect 
some potential key genome features.  It either misses 
some candidate genome features or cannot identify any 
key features at all even though the classification accuracy 
for the target protein family is very high.  In this case, 
even accumulated ROCs are still much smaller than that 
of their family ROCs.  The accumulated ROCs are 
obtained when all potential key features are removed 
from the genome matrix. 

 
The forward-feature-propagation procedure is a more 

exhaustive method undertaken for feature selection.  This 
approach is able to identify key genome features within 
the protein families when the backward-feature-
propagation fails either partially or completely.  About 50 
additional key genome features have been identified, 
demonstrating an enhanced sensitivity.  



 

 

 
Table 2.  Functions of candidate genome features and their class categorizations 

PFG 
index Fp Fn Tp Tn PFG 
20361 0 0 7 45 Ycf52 protein IPB000182 
2611 0 0 7 45 Carbon dioxide concentrating mechanism protein IPB000249 

4874 0 0 7 45 

Light-independent protochlorophyllide reductase iron-
sulfur ATP- binding protein (EC 1.18.-.-) (LI-POR 
subunit L) (DPOR subunit L). IPB000392 

15885 0 0 7 45 Photosystem D2 protein IPB000484 
16343 0 0 7 45 Proteasome IPB000484 
5372 0 0 7 45 Sulfite reductase (Ferredoxin) (EC 1.8.7.1) IPB000660 
15877 0 0 7 45 Photosystem 44 kDa reaction center protein IPB000932 
15886 0 0 7 45 Photosystem P680 chlorophyll A apoprotein IPB000932 
3647 0 0 7 45 Cytochrome IPB001417 

6527 0 0 7 45 

Mannose-1-phosphate guanylyltransferase (GDP) 
(EC 2.7.7.22) (GDP- mannose pyrophosphorylase) 
(GMP) IPB001538 

15859 0 0 7 45 Photosystem IPB002628 
15894 0 0 7 45 Photosystem reaction center J protein IPB002682 

5523 0 0 7 45 

Precorrin-3B C17-methyltransferase (EC 2.1.1.131) 
(Precorrin-3 methyltransferase) (Precorrin-3 
methylase) IPB003043 

15888 0 0 7 45 Photosystem assembly protein IPB003359 
15895 0 0 7 45 Photosystem reaction center L protein IPB003372 
15864 0 0 7 45 Photosystem IPB003375 
15866 0 0 7 45 Photosystem IPB003666 
13188 0 0 7 45 Magnesium-chelatase IPB003672 
15867 0 0 7 45 Photosystem IPB003685 
15915 0 0 7 45 Photosystem reaction center protein IPB003687 

8895 0 0 7 45 
Precorrin-8X methylmutase (EC 5.4.1.2) (Precorrin 
isomerase) IPB003722 

5039 0 0 7 45 Precorrin-6X reductase (EC 1.3.1.54) IPB003723 
15868 0 0 7 45 Photosystem IPB003757 

8431 0 0 7 45 
Ribulose bisphosphate carboxylase small chain (EC 
4.1.1.39) (RuBisCO small subunit). PR00152 

15871 0 0 7 45 Photosystem PR00353 
4904 0 0 7 45 Ferredoxin--NADP reductase (EC 1.18.1.2) (FNR) PR00371 
1574 0 0 7 45 Apocytochrome PR00610 
3687 1 0 7 44 Cytochrome B6-F complex IPB000179 

9800 1 0 7 44 
Erythromycin biosynthesis sensory transduction 
protein IPB000653 

4642 1 0 7 44 
Cytochrome B6-F complex iron-sulfur subunit (EC 
1.10.99.1) (Rieske iron-sulfur protein) (RISP) IPB001281 

19852 1 0 7 44 Urease accessory protein IPB002639 
19853 1 0 7 44 Urease accessory protein IPB002669 
19854 1 0 7 44 Urease accessory protein IPB002894 
2683 1 0 7 44 Cation-transporting IPB003581 
6183 1 0 7 44 Adaptive-response sensory-kinase sasA (EC 2.7.-.-) PR00344 

Note:  Fp, False positive; Fn, false native; Tp, True positive; and Tn, True negative. Total number of genomes is 52. 



 

 

Table 3.  Gene clustering of selected key genome features on Synechococcus sp. genome 
Gene 

Cluster 
 
GFSA ROC PCC Geneid 

Gene 
Position Function information 

 
BWFP 

0.68 -100% or2283 1583 

Deoxyribodipyrimidine photolyase (DNA 
photolyase) (Photoreactivating enzyme).  
E.C.4.1.99.3 IPB002081   

- - - or2284 1584 S-adenosylmethionine synthetase IPB002133   
- - - or2286 1585 Hypothetic protein   
FWFS 

0.97  or2287 1586 
Erythromycin biosynthesis sensory 
transduction protein IPB000653 

FWFP 0.65  or2289 1587 Multidrug resistance protein IPB001140  
- - - or2290 1588 Helix-turn-helix protein, CopG family 
- - - or2291 1589 PIN (Pfam domain) IPB002716   
BWFP 0.84 -40% or2292 1590 Magnesium-chelatase IPB002078 
BWFP 0.86 -100% or2293 1591 Hypotheticl protein IPB002882   
BWFP 0.57 -100% or2295 1592 Rubredoxin (Rd). Rubredoxin IPB001052 
- - - or2296 1593 Hypothetic protein 
BWFP 1 -100% or2297 1594 Cytochrome B559 alpha chain IPB001417 
BWFP 

1 -100% or2298 1595 
Cytochrome B559 beta chain. Cytochrome 
IPB001417  

BWFP 
1 -100% or2299 1596 

Photosystem reaction center L protein 
IPB003372   

BWFP 1 -100% or2300 1597 Photosystem reaction center J protein IPB002682 

I 

FWFP 
0.8  or2305 1598 

UDP-glucose 4-epimerase (Galactowaldenase)  
EC 5.1.3.2 IPB001509 

FWFP 
0.74  or3145 2225 

Iron(III)-transport ATP-binding protein 
IPB001140  

BWFP 
0.44 -100% or3146 2226 

ATP phosphoribosyltransferase EC 2.4.2.17 
IPB001348 

FWFP 0.86  or3147 2227 Hemolysin IPB001140 

II 

BWFP 1 -70% or3148 2228 Ycf52 protein IPB000182 
Note: GFSA, Genome feature selection approach; PCC, Performance percentage change; -, no testing data available; 
BWFS, Backward-feature-propagation; FWFS, Forward-feature-propagation. If FWFP, feature selection confidence is 
determined only by its ROC performance, otherwise, the confidence is measured by both family-based ROC and the 
percentage change for leave-one-out cross-validation. 

 
3.4. Validation of key genome features 
 

The application of the SVM-based feature selection 
algorithm to the oxygenic photosynthetic process results 
in the identification of a total of 126 highly confident key 
genome features.  They cover not only dominant key 
genome features (that always occur in oxygenic 
photosynthetic genomes but not in the others) but also 
weak yet complementary key genome features (their 
combinations make unique dominant key genome 
features).  While many of these features are easily 
recognized gene components in the oxygenic 
photosynthetic process (features in italic in Table 2), the 
others are less clear (features in bold in Table 2).  Some 
of them are even genes that encode proteins annotated as 
“hypothetical”.  To provide preliminary evidence for the 
relationships between these genome features and the 

oxygenic photosynthetic process, we investigate gene 
clustering among those (in Table 2) and other (in 
supplementary tables) key genome features on the 
genome of Synechococcus sp. Strain: WH 8102.  Two out 
of five established genome feature clusters are shown 
(Table 3).  Each of the clusters is built around one 
particular genome feature as indicated by the name prefix 
of the cluster.  For example, “Erythromycin-biosynthesis-
sensory-transduction-protein-cluster” is constructed 
around “Erythromycin biosynthesis sensory transduction 
protein” under protein family of PR00344. 

 
A case-by-case investigation of these genome feature 

clusters demonstrates that the majority of the genes in 
these clusters correspond to the key genome features 
identified by our SVM-based feature selection algorithm.  
“Erythromycin-biosynthesis-sensory-transduction-



 

 

protein-cluster” is one of the biggest key genome feature 
clusters.  A total of 16 genes are covered and five are 
considered as dominant features.  Among these five, four 
are the genes that are known to be involved in the 
oxygenic photosynthetic biochemical process.  This 
result indicates that these key genome features are 
potential components of gene networks for the oxygenic 
photosynthetic biochemical process.  It is worthwhile to 
mention that both the gene at the genome position 1591 
in this cluster and the Ycf52 protein at the position 1615 
in Cluster II are identified as key genes, although they are 
annotated as hypothetical genes. Apparently, our 
algorithm has an ability to provide some functional clues 
about these hypothetical proteins.  

 
4. Discussion and conclusion 
 

In this paper, we present an SVM-based genome 
feature selection algorithm for the identification of genes 
that contribute to the oxygenic photosynthetic process. 
The algorithm is applied in a hierarchical fashion so that 
the search space for key genome features is gradually 
narrowed from full-feature genome data matrix of 52 
rows (annotated genomes) and 21,656 columns (genome 
features, or function groups) to protein family-based 
matrices with a few features.    As a result, as many as 
126 highly confident key genome features are identified.  
Twenty-seven of those features occur only among 
oxygenic photosynthetic genomes.  The majority of these 
genome features (20 out of 27) have already been 
documented as functions specific to the biochemical 
process.  This result provides strong evidence that the key 
genome features are indeed the potential components of 
oxygenic photosynthetic gene networks. 

 
Additional evidence comes from the clustering of 

genes based on their co-occurrence on the genome.  Each 
of the five gene clusters established around a single key 
genome feature includes the genes that either correspond 
to the predicted key genome features or are known to be 
the gene components of the oxygenic photosynthetic 
process.  Specifically, the Ycf52-protein-cluster was 
identified in 3 out of 7 annotated cyanobacterial 
genomes.  The majority of genes from this cluster are the 
components of the biochemical process. They are highly 
conserved across multiple genomes.  These results 
provide an additional support for the capability of our 
algorithm to identify key genome features directly related 
to the targeted biochemical process. 

 
4.1. Dominant vs. weak key genome features  
 

The predicted key genome features can be 
partitioned into two categories: the dominant features and 
the weak ones. The dominant genome features make a 

significant contribution to the SVM’s classification 
performance. Using a single dominant feature is 
sufficient for building a highly confident separating 
hyperplane.  They occur only in the positive class of 
genomes (in which the biochemical process is present) 
and are completely absent in the negative class.  The 
identification of such dominant genome features is 
straightforward [19].   The weak candidate genome 
features do not make a significant contribution to the 
classification performance but they do contribute 
significantly once they are combined with other weak 
genome features.  The prediction of such weak key 
genome features is especially important for building 
genetic networks. Most of the existing approaches 
reported in literature fail to identify such weak key 
genome features. For example, in Raymond et al. (2002), 
only 50 genes were identified as photosynthesis-related 
(occurred in all photosynthetic genomes and some or all 
of non-photosynthetic genomes) and 3 genes as 
photosynthesis-specific (occurred only in photosynthetic 
genomes). Thus, our SVM-based feature selection 
algorithm provides the capability far beyond the reach of 
any exiting genome comparative analysis approach.   

 
4.2. Future development 
 

Our SVM-based feature identification algorithm 
finds candidate key genome features at various 
confidence levels.  The evaluation of the reliability of 
predictions without a biology wet lab experimental 
support presents a tremendous problem not only for our 
algorithm but also for any computational algorithm. To 
alleviate this problem and improve the prediction 
accuracy, we plan to text-mine the InterPro data [22] for 
the purpose of extracting all possible functions that are 
related, either directly or indirectly, to our targeted 
biochemical cellular processes.  Once such a knowledge 
base is built, we can estimate the specificity of our 
algorithm by compare the functions from the knowledge 
base with the predicted ones.  Statistical analysis of these 
data will give us a rough estimation of the confidence 
level and provide a scientific basis for determining the 
threshold parameters in future applications of our 
algorithm to genome features selection. 
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