
CCA
Common Component Architecture

1School of Computing, University of Utah9 April 2003 1School of Computing, University of Utah9 April 2003

CCA: Components for High
Performance Scientific

Computing

David E. Bernholdt
Computer Science and Mathematics Division

Oak Ridge National Laboratory

In collaboration with the CCA Forum
http://www.cca-forum.org

Research supported by the Mathematics, Information and Computational Sciences Office, Office of
Advanced Scientific Computing Research, U.S. Dept. of Energy. Oak Ridge National Laboratory is
managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725

CCA
Common Component Architecture

2School of Computing, University of Utah9 April 2003

Modern Scientific Software
Engineering Challenges

• Productivity
– Time to first solution (prototyping)
– Time to solution (“production”)
– Software infrastructure requirements

• Complexity
– Increasingly sophisticated models
– Model coupling – multi-scale, multi-physics, etc.
– “Interdisciplinarity”

• Performance
– Increasingly complex algorithms
– Increasingly complex computers
– Increasingly demanding applications

CCA
Common Component Architecture

3School of Computing, University of Utah9 April 2003

Component-Based Software
Engineering

• CBSE methodology is emerging, especially popular in
business and internet areas

• “The best software is code you don’t have to write” [Jobs]
• Software productivity

– Provides a “plug and play” application development environment
– Many components available “off the shelf”
– Facilitates reuse and interoperability of components

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications & adaptation
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component library

simplify changes to accommodate different platforms

CCA
Common Component Architecture

4School of Computing, University of Utah9 April 2003

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

5School of Computing, University of Utah9 April 2003

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Example

Components

CCA
Common Component Architecture

6School of Computing, University of Utah9 April 2003

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

7School of Computing, University of Utah9 April 2003

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

8School of Computing, University of Utah9 April 2003

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

9School of Computing, University of Utah9 April 2003

What are Components?

• No universally accepted definition…yet

• A unit of software deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world
– Components may maintain state information
– But external access to state info must be through an interface (not a

common block)

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

CCA
Common Component Architecture

10School of Computing, University of Utah9 April 2003

What is a Component
Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an

application and executed (framework)
– The rights and responsibilities of the framework

CCA
Common Component Architecture

11School of Computing, University of Utah9 April 2003

Computational Facility for
Reacting Flow Science (CFRFS)

• SciDAC BES project, H. Najm PI
• Investigators: Sofia Lefantzi

(SNL), Jaideep Ray (SNL),
Sameer Shende (Oregon)

• Goal: A “plug-and-play” toolkit environment for flame
simulations

• Problem Domain: Structured adaptive mesh
refinement solutions to reaction-diffusion problems

CCA
Common Component Architecture

12School of Computing, University of Utah9 April 2003

Scientific and Technical
Summary

• H2-Air ignition on a structured
adaptive mesh, with an
operator-split formulation

• RKC for non-stiff terms, BDF
for stiff

• 9-species, 19-reactions, stiff
mechanism

• 1cm x 1cm domain; max
resolution = 12.5 microns

• Kernel for a 3D, adaptive mesh
low Mach number flame
simulation capability in SNL,
Livermore

• Components are usually in C++
or wrappers around old F77 code

• Developed numerous
components
– Integrator, spatial discretizations,

chemical rates evalutator,
transport property models, timers
etc.

– Structured adaptive mesh, load-
balancers, error-estimators (for
refining/coarsening)

– In-core, off-machine, data
transfers for post-processing

• TAU for timing (Oregon, PERC)
• CVODES integrator (LLNL,

TOPS)

CCA
Common Component Architecture

13School of Computing, University of Utah9 April 2003

“Wiring Diagram” for CFRFS App.

CCA
Common Component Architecture

14School of Computing, University of Utah9 April 2003

Animation of the Temperature Field

CCA
Common Component Architecture

15School of Computing, University of Utah9 April 2003

Domain-Specific Frameworks vs
General Component Architectures

Domain-specific
• Often known as

“frameworks”
• Provide a significant

software infrastructure to
support applications in a
given domain
– Often attempts to generalize

an existing large application
• Often hard to adapt to use

outside the original domain
– Tend to assume a particular

structure/workflow for
application

• Relatively common

General
• Provide the infrastructure to

hook components together
– Domain-specific infrastructure

can be built as more
components

• Usable in many domains
– Few assumptions about

application
– More opportunities for reuse

• Better supports model
coupling across traditional
domain boundaries

• Relatively rare at present
– Commodity component

models often not so useful in
HPC scientific context

CCA
Common Component Architecture

16School of Computing, University of Utah9 April 2003

Special Needs of Scientific HPC
• Support for legacy software

– How much change required for component environment?
• Performance is important

– What overheads are imposed by the component
environment?

• Both parallel and distributed computing are important
– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

• “Commodity” component models may have problems
– CORBA, COM, JavaBeans

CCA
Common Component Architecture

17School of Computing, University of Utah9 April 2003

What is the CCA? (User View)

• A component model specifically designed for high-
performance scientific computing

• Supports both parallel and distributed applications
• Designed to be implementable without sacrificing

performance
• Minimalist approach makes it easier to componentize

existing software

• A tool to enhance the productivity of scientific
programmers
– Make the hard things easier, make some intractable things

tractable
– Support & promote reuse & interoperability
– Not a magic bullet

CCA
Common Component Architecture

18School of Computing, University of Utah9 April 2003

CCA-Related Organizations

CCA Forum

• Standards body for CCA
– CCA Specification

• Promote/facilitate interface
development

• Goal: interoperability

• Open membership

• Quarterly meetings
– Dates set ~1 year ahead
– Next: Thu-Fri Hotel Monaco

CCTTSS

• DOE-funded SciDAC Center

• Develop “prototype” stage to full
production environment

• Understand how to use
component architectures
effectively in HPC environments

• Subset of CCA Forum
– ANL, LANL, LLNL, PNNL,

ORNL, SNL, Indiana, Utah

CCA
Common Component Architecture

19School of Computing, University of Utah9 April 2003

• Port (aka interface)
– Procedural interface (not just dataflow!)
– Like C++ abst. virtual class, Java interface
– Uses/provides design pattern

• Component
– A unit of software deployment/reuse (i.e. has interesting functionality)
– Interacts with the outside world only through well-defined interfaces
– Implementation is opaque to the outside world
– Components are peers

• Framework
– Holds components during application composition and execution
– Controls the “exchange” of interfaces between components (while ensuring

implementations remain hidden)
– Provides a small set of standard, ubiquitous services to components

• CCA spec doesn’t specify a framework per se, so components can be constructed
to provide framework-like services

Basic CCA Terminology

Linear
Function

Fun

Integrator

Result Fun

Config

CCA
Common Component Architecture

20School of Computing, University of Utah9 April 2003

Writing Components

• Interfaces (ports) extend gov.cca.Port
• Components…

– Inherit from gov.cca.Component
• setServices method registers ports this component will

provide and use
– Implement the ports they they provide
– Use ports on other components

• getPort/releasePort from framework Services object

CCA
Common Component Architecture

21School of Computing, University of Utah9 April 2003

Objects vs Components

• You can build components out of object
classes
– (or out of Fortran procedures)

• But a component is more that just an object

• A component only exists in the context of a
component standard and the environment it
defines (framework)

CCA
Common Component Architecture

22School of Computing, University of Utah9 April 2003

Libraries vs Components
• Component environments

rigorously enforce interfaces
• Can have several versions of

a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
– Environmental queries

• Invoking methods on other
components typically
requires modifications to
“library” code

Integrator

Integrator library code
(modified)

Framework interaction
code (new)

CCA
Common Component Architecture

23School of Computing, University of Utah9 April 2003

Writing Frameworks

• Frameworks must provide certain ports…
– ConnectionEventService

• Informs the component of connections
– AbstractFramework

• Allows the component to behave as a framework
– BuilderService

• instantiate components & connect ports
– ComponentRepository

• A default place where components are found
– Coming soon: framework services can be implemented in

components and registered as services
• Frameworks must be able to load components

– Typically shared object libraries, can be statically linked
• Frameworks must provide a way to compose

applications from components

CCA
Common Component Architecture

24School of Computing, University of Utah9 April 2003

Typical Component Lifecycle

• Composition Phase
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase
– Code in components uses functions provided by another

component

• Decomposition Phase
– Connections between component interfaces may be broken
– Component may be destroyed

Phases may be intermixed
Steps may be under human or software control

CCA
Common Component Architecture

25School of Computing, University of Utah9 April 2003

Composition Phase

Framework Mediates Most
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

Execution Phase
Composition Phase* Method invocation need not

be mediated by the framework!

*

CCA
Common Component Architecture

26School of Computing, University of Utah9 April 2003

Importance of Provides/Uses
Pattern for Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun
Uses
Port

Provides
Port

Network
Connection

CCA
Common Component Architecture

27School of Computing, University of Utah9 April 2003

“Direct Connection” Maintains
Local Performance

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table
• Calls between components equivalent to a C++ virtual

function call: lookup function location, invoke
• Cost equivalent of ~2.8 F77 or C function calls
• All this happens “automatically” – user just sees high

performance
• Description reflects Ccaffeine implementation, but similar

or identical mechanisms are in other direct connect fwks

CCA
Common Component Architecture

28School of Computing, University of Utah9 April 2003

Framework Stays “Out of the
Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

CCA
Common Component Architecture

29School of Computing, University of Utah9 April 2003

Scalability of Scientific Data
Components in CFRFS Combustion

Applications
• Investigators: S. Lefantzi, J. Ray,

and H. Najm (SNL)
• Uses GrACEComponent,

CvodesComponent, etc.
• Shock-hydro code with no

refinement
• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead
• Worst perf : 73% scaling efficiency

for 200x200 mesh on 48 procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003, accepted.

CCA
Common Component Architecture

30School of Computing, University of Utah9 April 2003

Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

CCA
Common Component Architecture

31School of Computing, University of Utah9 April 2003

Babel Architecture

• Server side codes to skels
– Specific to server’s language

• Client side codes to stubs
– Specific to client’s language

• Internal Object Representation
(IOR) bridges between

– Implemented in C

• Babel includes both code
generation and runtime
components

• Strives to allow natural-looking
code in each supported language

C Skels

C Impls

IORs

F77 Stubs

SIDL
interface

description

Babel
Compiler

F77 Client

C Server

Babel
Runtime

libclient.so

libserver.so

User providedBabel generated

Babel “tools”Babel generated
Key:

• Babel generates glue code from
SIDL specification of interface

CCA
Common Component Architecture

32School of Computing, University of Utah9 April 2003

Scientific Interface Definition
Language (SIDL)

• SIDL expresses only interfaces
– Not a full-fledged programming language

• Interface definition is basis of code generation for
both client and server

• Server side also needs SIDL expression of what’s
implemented

version functions 1.0;
package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}
}

version functions 1.0;
package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}
}

CCA
Common Component Architecture

33School of Computing, University of Utah9 April 2003

Additional SIDL for Server Side

• Objects: Interfaces, Abstract Classes, Concrete
Classes

• Methods: all public; virtual, static, final
• Mode: in, out, inout (like CORBA)
• Types: bool, char, int, long, float, double, fcomplex,

dcomplex, array<Type,Dimension>, enum, interface,
class

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

CCA
Common Component Architecture

34School of Computing, University of Utah9 April 2003

Interfaces, Interoperability, and
Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires

multiple implementations providing the same
interface

• Reuse of components occurs when they provide
interfaces (functionality) needed in multiple
applications

CCA
Common Component Architecture

35School of Computing, University of Utah9 April 2003

Designing for Reuse

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

• Generally means collaborating with others
• Higher initial development cost (amortized over

multiple uses)
• Reuse implies longer-lived code

– thoroughly tested
– highly optimized
– improved support for multiple platforms

CCA
Common Component Architecture

36School of Computing, University of Utah9 April 2003

CCA Research Thrusts and
Application Domains

• Frameworks
– Framework interoperability
– Language interoperability
– Deployment

• Scientific Components
– Component suite dev.
– Basic data interfaces
– Numerical quality of svc.

• MxN Parallel Data
Redistribution
– Component-based
– Framework-based

• Application Outreach
– Education
– Best practices for use
– Chemistry, Climate

SciDAC:
• Combustion (CFRFS)
• Climate Modeling (CCSM)
• Meshing Tools (TSTT)
• (PDE) Solvers (TOPS)
• IO, Poisson Solvers (APDEC)
• Fusion (CMRS)
• Supernova simulation (TSI)
• Accelerator simulation (ACCAST)
DOE Outside of SciDAC:
• ASCI: C-SAFE, Views, Data Svc’s
• Quantum Chemistry
Outside of DOE:
• NASA: ESMF, SWMF
• Etc.…

CCA
Common Component Architecture

37School of Computing, University of Utah9 April 2003

Component Inventory:
Data Management, Meshing and Discretization

• Global Array Component – M. Krishnan and J. Nieplocha (PNNL) –
classic and SIDL – Provides capabilities for manipulating multidimensonal
dense distributed arrays; supports DADF common interface.

• TSTTMesh – L.F. Diachin (SNL, formerly ANL) – classic – Provides
prototype capabilities for querying unstructured meshes based on
interfaces being designed within the TSTT SciDAC Center.

• FEMDiscretization – L.F. Diachin (SNL, formerly ANL) – classic –
Provides finite element discretization of diffusion and advection PDE
operators and linear system assembly capabilities.

• GrACEComponent – J. Ray (SNL) – classic – Provides parallel AMR
infrastructure, which follows a hierarchy-of-patches methodology for
meshing and includes load-balancing; based on GrACE (Rutgers); being
used in combustion applications within the SciDAC CFRFS project.

CCA
Common Component Architecture

38School of Computing, University of Utah9 April 2003

Component Inventory:
Integration, Optimization, and Linear Algebra

• CvodesComponent – Radu Serban (LLNL, TOPS collaborator) –
classic – Provides a generic implicit ODE integrator and an implicit
ODE integrator with sensitivity capabilities; based on CVODES;
used in combustion applications within the CFRFS.

• TaoSolver – S. Benson, L.C. McInnes, B. Norris, and J. Sarich
(ANL) – SIDL – Provides solvers for unconstrained and bound
constrained optimization problems, which build on infrastructure
within TAO (ANL); uses external linear algebra capabilities.

• LinearSolver – B. Norris (ANL) – classic – Provides a prototype
linear solver port; in the process of evolving to support common
interfaces for linear algebra that are under development within the
TOPS SciDAC center.

CCA
Common Component Architecture

39School of Computing, University of Utah9 April 2003

Component Inventory:
Parallel Data Description, Redistribution, and

Visualization

• DistArrayDescriptorFactory – D. Bernholdt and W. Elwasif (ORNL) –
classic – Provides a uniform means for applications to describe dense
multi-dimensional arrays; based upon emerging interfaces from the
CCA Scientific Data Components Working Group.

• CumulvsMxN – J. Kohl, D. Bernholdt, and T. Wilde (ORNL) – classic –
Builds on CUMULVS (ORNL) technology to provide an initial
implementation of parallel data redistribution interfaces that are under
development by the CCA “MxN” Working Group.

• VizProxy – J. Kohl and T. Wilde (ORNL) – classic – Provides a
companion “MxN” endpoint for extracting parallel data from component-
based applications and then passing this data to a separate front-end
viewer for graphical rendering and presentation. Variants exist for
structured data and unstructured triangular mesh data as well as text-
based output.

CCA
Common Component Architecture

40School of Computing, University of Utah9 April 2003

Component Inventory:
Services, Graphical Builders, and Performance

• Ccaffeine Services – B. Allan, R. Armstrong. M. Govindaraju, S.
Lefantzi, and E. Walsh (SNL) – classic and SIDL – Services for
parameter ports, connections between SIDL and classic ports, MPI
access, connection events, etc.

• Graphical Builders – B. Norris (ANL) and S. Parker (Univ. of Utah)
– Prototype graphical builders that can be used to assemble
components, set parameters, execute, and monitor component-
based simulations.

• Performance Observation – S. Shende and A. Malony (Univ. of
Oregon), C. Rasmussen and M. Sotille (LANL), and J. Ray (SNL) –
classic and SIDL – Provides measurement capabilities to
components, thereby aiding in the selection of components and
helping to create performance aware intelligent components; based
on TAU (Oregon).

CCA
Common Component Architecture

41School of Computing, University of Utah9 April 2003

Applications: Computational
Chemistry

• Molecular Optimization

• Investigators: Steve Benson (ANL)
Curtis Janssen (SNL), Liz Jurris
(PNNL), Manoj Krishnan (PNNL),
Lois McInnes (ANL), Jarek
Nieplocha (PNNL), Boyana Norris
(ANL), Jason Sarich (ANL), Theresa
Windus (PNNL)

• Goal: Demonstrate interoperability
between packages, develop
experience with large existing code
bases, seed interest in Chemistry
domain

• Problem Domain: Optimization of
molecular structures using quantum
chemical methods

• Advanced Software for the
Calculation of Thermochemistry,
Kinetics, and Dynamics

• SciDAC BES project, Al Wagner PI

• Investigators: Ronald Duchovic
(Indiana-Purdue Fort Wayne),
Wael Elwasif (ORNL), Lois
McInnes (ANL), Craig Rasmussen
(LANL)

• Goal: Develop a standard interface
to provide numerical potential
energy surface information to
reaction dynamics codes

• Problem Domain: Reaction
dynamics

CCA
Common Component Architecture

42School of Computing, University of Utah9 April 2003

Scientific and Technical
Summary

Molecular Optimization
• Decouple geometry

optimization from electronic
structure

• Demonstrate interoperability of
electronic structure
components

• Build towards more challenging
optimization problems, e.g.,
protein/ligand binding studies

• Software:
– Electronic structure: MPQC,

NWChem,
– Optimization:TAO
– Linear algebra: Global Arrays,

PETSc

Reaction Dynamics
• Software: POTLIB
• Developing a component

interface for POTLIB
– Original interface makes

extensive use of Fortran
common blocks

CCA
Common Component Architecture

43School of Computing, University of Utah9 April 2003

Applications: Climate Modeling
Community Climate

System Model

• SciDAC BER project,
John Drake and Robert
Malone PIs

• Goals: Investigate
model coupling and
parameterization-level
componentization within
models

Earth System Modeling
Framework

• NASA project, Tim
Killeen, John Marshall,
and Arlindo da Silva PIs

• Goal: Build domain-
specific framework for
the development of
climate models

• Investigators: John Drake (ORNL), Wael Elwasif (ORNL),
Michael Ham (ORNL), Jay Larson (ANL), Everest Ong
(ANL)

CCA
Common Component Architecture

44School of Computing, University of Utah9 April 2003

Community Climate System
Model

• Model Coupling Toolkit
(MCT)
– Coupler for CCSM
– Basis for ESMF coupler
– Contributions to MxN
– River runoff model

• Community Atmosphere
Model (CAM)
– Componentization at

physics/dynamics
interface

CCA
Common Component Architecture

45School of Computing, University of Utah9 April 2003

Earth System Modeling
Framework

ATM OCN

Courtesy Shujia Zhou, NASA Goddard

• Prototype superstructure
• Investigating grid layer
interfaces

CCA
Common Component Architecture

46School of Computing, University of Utah9 April 2003

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming
environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of
algorithms/physics from data

CCA
Common Component Architecture

47School of Computing, University of Utah9 April 2003

What the CCA is…
(a.k.a. Summary)

• CCA is a specification for a component environment
–Fundamentally, a design pattern
–Multiple “reference” implementations exist
–Being used by applications

• CCA increases productivity
–Supports and promotes software interopability and reuse
–Provides “plug-and-play” paradigm for scientific software

• CCA offers the flexibility to architect your application as
you think best

–Doesn’t dictate component relationships, programming models, etc.
–Minimal performance overhead
–Minimal cost for incorporation of existing software

• CCA provides an environment in which domain-specific
application frameworks can be built

–While retaining opportunities for software reuse at multiple levels

