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Modern Scientific Software 
Engineering Challenges

• Productivity
– Time to first solution (prototyping)
– Time to solution (“production”)
– Software infrastructure requirements

• Complexity
– Increasingly sophisticated models
– Model coupling – multi-scale, multi-physics, etc.
– “Interdisciplinarity”

• Performance
– Increasingly complex algorithms
– Increasingly complex computers
– Increasingly demanding applications
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Component-Based Software 
Engineering

• CBSE methodology is emerging, especially popular in  
business and internet areas

• “The best software is code you don’t have to write” [Jobs]
• Software productivity

– Provides a “plug and play” application development environment
– Many components available “off the shelf”
– Facilitates reuse and interoperability of components

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications & adaptation
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component library 

simplify changes to accommodate different platforms
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Components and Ports 
in the Integrator Example
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Another Application…
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Application 3…
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And Many More…
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What are Components?

• No universally accepted definition…yet

• A unit of software deployment/reuse 
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world
– Components may maintain state information
– But external access to state info must be through an interface (not a 

common block)

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces
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What is a Component 
Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with 

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an 

application and executed (framework)
– The rights and responsibilities of the framework
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Computational Facility for 
Reacting Flow Science (CFRFS)

• SciDAC BES project, H. Najm PI
• Investigators: Sofia Lefantzi 

(SNL), Jaideep Ray (SNL), 
Sameer Shende (Oregon)

 

• Goal: A “plug-and-play” toolkit environment for flame 
simulations

• Problem Domain: Structured adaptive mesh 
refinement solutions to reaction-diffusion problems
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Scientific and Technical 
Summary

• H2-Air ignition on a structured 
adaptive mesh, with an 
operator-split formulation

• RKC for non-stiff terms, BDF 
for stiff

• 9-species, 19-reactions, stiff 
mechanism

• 1cm x 1cm domain; max 
resolution = 12.5 microns

• Kernel for a 3D, adaptive mesh 
low Mach number flame 
simulation capability in SNL, 
Livermore

• Components are usually in C++ 
or wrappers around old F77 code

• Developed numerous 
components
– Integrator, spatial discretizations, 

chemical rates evalutator, 
transport property models, timers 
etc.

– Structured adaptive mesh, load-
balancers, error-estimators (for 
refining/coarsening)

– In-core, off-machine, data 
transfers for post-processing

• TAU for timing (Oregon, PERC)
• CVODES integrator (LLNL, 

TOPS)
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“Wiring Diagram” for CFRFS App.
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Animation of the Temperature Field
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Domain-Specific Frameworks vs  
General Component Architectures

Domain-specific
• Often known as 

“frameworks”
• Provide a significant 

software infrastructure to 
support applications in a 
given domain
– Often attempts to generalize 

an existing large application
• Often hard to adapt to use 

outside the original domain
– Tend to assume a particular 

structure/workflow for 
application

• Relatively common

General
• Provide the infrastructure to 

hook components together
– Domain-specific infrastructure 

can be built as more 
components

• Usable in many domains
– Few assumptions about 

application
– More opportunities for reuse

• Better supports model 
coupling across traditional 
domain boundaries

• Relatively rare at present
– Commodity component 

models often not so useful in 
HPC scientific context
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Special Needs of Scientific HPC
• Support for legacy software

– How much change required for component environment?
• Performance is important

– What overheads are imposed by the component 
environment?

• Both parallel and distributed computing are important
– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers?  Arrays? (as first-class objects)
– Is it available on my parallel computer?

• “Commodity” component models may have problems
– CORBA, COM, JavaBeans
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What is the CCA? (User View)

• A component model specifically designed for high-
performance scientific computing

• Supports both parallel and distributed applications
• Designed to be implementable without sacrificing 

performance
• Minimalist approach makes it easier to componentize

existing software

• A tool to enhance the productivity of scientific 
programmers
– Make the hard things easier, make some intractable things 

tractable
– Support & promote reuse & interoperability
– Not a magic bullet
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CCA-Related Organizations

CCA Forum

• Standards body for CCA
– CCA Specification

• Promote/facilitate interface 
development

• Goal: interoperability

• Open membership

• Quarterly meetings
– Dates set ~1 year ahead
– Next: Thu-Fri Hotel Monaco

CCTTSS

• DOE-funded SciDAC Center

• Develop “prototype” stage to full 
production environment

• Understand how to use 
component architectures 
effectively in HPC environments

• Subset of CCA Forum
– ANL, LANL, LLNL, PNNL, 

ORNL, SNL, Indiana, Utah
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• Port (aka interface)
– Procedural interface (not just dataflow!)
– Like C++ abst. virtual class, Java interface
– Uses/provides design pattern

• Component
– A unit of software deployment/reuse (i.e. has interesting functionality)
– Interacts with the outside world only through well-defined interfaces
– Implementation is opaque to the outside world
– Components are peers

• Framework
– Holds components during application composition and execution
– Controls the “exchange” of interfaces between components (while ensuring 

implementations remain hidden)
– Provides a small set of standard, ubiquitous services to components

• CCA spec doesn’t specify a framework per se, so components can be constructed 
to provide framework-like services

Basic CCA Terminology

Linear 
Function

Fun

Integrator

Result Fun

Config
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Writing Components

• Interfaces (ports) extend gov.cca.Port
• Components… 

– Inherit from gov.cca.Component
• setServices method registers ports this component will 

provide and use
– Implement the ports they they provide
– Use ports on other components

• getPort/releasePort from framework Services object
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Objects vs Components

• You can build components out of object 
classes
– (or out of Fortran procedures)

• But a component is more that just an object

• A component only exists in the context of a 
component standard and the environment it 
defines (framework)
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Libraries vs Components
• Component environments 

rigorously enforce interfaces
• Can have several versions of 

a component loaded into a 
single application

• Component needs add’l
code to interact w/ 
framework
– Constructor and destructor 

methods
– Tell framework what ports it 

uses and provides
– Environmental queries

• Invoking methods on other 
components typically 
requires modifications to 
“library” code

Integrator

Integrator library code
(modified)

Framework interaction
code (new)
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Writing Frameworks

• Frameworks must provide certain ports…
– ConnectionEventService

• Informs the component of connections
– AbstractFramework 

• Allows the component to behave as a framework
– BuilderService

• instantiate components & connect ports
– ComponentRepository

• A default place where components are found
– Coming soon: framework services can be implemented in 

components and registered as services
• Frameworks must be able to load components

– Typically shared object libraries, can be statically linked
• Frameworks must provide a way to compose 

applications from components
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Typical Component Lifecycle

• Composition Phase
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase
– Code in components uses functions provided by another 

component

• Decomposition Phase
– Connections between component interfaces may be broken
– Component may be destroyed

Phases may be intermixed
Steps may be under human or software control
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Composition Phase

Framework Mediates Most
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

Execution Phase
Composition Phase* Method invocation need not 

be mediated by the framework!

*
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Importance of Provides/Uses 
Pattern for Ports

• Fences between components
– Components must declare both 

what they provide and what 
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything 
not part of a port

• Ports preserve high 
performance direct connection
semantics…

• …While also allowing distributed 
computing

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun
Uses
Port

Provides
Port

Network
Connection
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“Direct Connection” Maintains 
Local Performance

• Components loaded into separate namespaces in the 
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table
• Calls between components equivalent to a C++ virtual 

function call: lookup function location, invoke
• Cost equivalent of ~2.8 F77 or C function calls
• All this happens “automatically” – user just sees high 

performance
• Description reflects Ccaffeine implementation, but similar 

or identical mechanisms are in other direct connect fwks
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Framework Stays “Out of the 
Way” of Component Parallelism

• Single component multiple data 
(SCMD) model is component 
analog of widely used SPMD 
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same 
process “talk to each” other via 
ports and the framework

•Same component in different 
processes talk to each other 
through their favorite 
communications layer (i.e. 
MPI, PVM, GA)

• Each process loaded with the 
same set of components wired 
the same way
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Scalability of Scientific Data 
Components in CFRFS Combustion 

Applications
• Investigators:  S. Lefantzi, J. Ray, 

and H. Najm (SNL) 
• Uses GrACEComponent, 

CvodesComponent, etc.
• Shock-hydro code with no 

refinement
• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead 
• Worst perf : 73% scaling efficiency 

for 200x200 mesh on 48 procs

Reference:  S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance 
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003, accepted.
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Language Interoperability

• Existing language 
interoperability 
approaches are “point-
to-point” solutions

• Babel provides a unified 
approach in which all 
languages are 
considered peers

• Babel used primarily at 
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
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Babel Architecture

• Server side codes to skels
– Specific to server’s language

• Client side codes to stubs
– Specific to client’s language

• Internal Object Representation 
(IOR) bridges between

– Implemented in C

• Babel includes both code 
generation and runtime
components

• Strives to allow natural-looking 
code in each supported language

C Skels

C Impls

IORs

F77 Stubs

SIDL 
interface

description

Babel
Compiler

F77 Client

C Server

Babel
Runtime

libclient.so

libserver.so

User providedBabel generated

Babel “tools”Babel generated
Key:

• Babel generates glue code from 
SIDL specification of interface
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Scientific Interface Definition 
Language (SIDL)

• SIDL expresses only interfaces
– Not a full-fledged programming language

• Interface definition is basis of code generation for 
both client and server

• Server side also needs SIDL expression of what’s 
implemented

version functions 1.0;
package functions {

interface Function extends gov.cca.Port { 
double evaluate( in double x );

}
}

version functions 1.0;
package functions {

interface Function extends gov.cca.Port { 
double evaluate( in double x );

}
}
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Additional SIDL for Server Side

• Objects: Interfaces, Abstract Classes, Concrete 
Classes

• Methods: all public; virtual, static, final
• Mode: in, out, inout (like CORBA)
• Types: bool, char, int, long, float, double, fcomplex,

dcomplex, array<Type,Dimension>, enum, interface, 
class

class LinearFunction implements functions.Function,
gov.cca.Component { 

double evaluate( in double x );
void setServices( in cca.Services svcs );

}

class LinearFunction implements functions.Function,
gov.cca.Component { 

double evaluate( in double x );
void setServices( in cca.Services svcs );

}
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Interfaces, Interoperability, and 
Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and 

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires 

multiple implementations providing the same 
interface

• Reuse of components occurs when they provide 
interfaces (functionality) needed in multiple 
applications
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Designing for Reuse

• Designing for interoperability and reuse requires 
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean 

“widely used”

• Generally means collaborating with others
• Higher initial development cost (amortized over 

multiple uses)
• Reuse implies longer-lived code

– thoroughly tested 
– highly optimized
– improved support for multiple platforms
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CCA Research Thrusts and 
Application Domains

• Frameworks
– Framework interoperability
– Language interoperability
– Deployment

• Scientific Components
– Component suite dev.
– Basic data interfaces
– Numerical quality of svc.

• MxN Parallel Data 
Redistribution
– Component-based
– Framework-based

• Application Outreach
– Education
– Best practices for use
– Chemistry, Climate

SciDAC:
• Combustion (CFRFS)
• Climate Modeling (CCSM)
• Meshing Tools (TSTT)
• (PDE) Solvers (TOPS)
• IO, Poisson Solvers (APDEC)
• Fusion (CMRS)
• Supernova simulation (TSI)
• Accelerator simulation (ACCAST)
DOE Outside of SciDAC:
• ASCI: C-SAFE, Views, Data Svc’s
• Quantum Chemistry
Outside of DOE:
• NASA: ESMF, SWMF
• Etc.…
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Component Inventory:
Data Management, Meshing and Discretization

• Global Array Component – M. Krishnan and J. Nieplocha (PNNL) –
classic and SIDL – Provides capabilities for manipulating multidimensonal
dense distributed arrays; supports DADF common interface.

• TSTTMesh – L.F. Diachin (SNL, formerly ANL) – classic – Provides 
prototype capabilities for querying unstructured meshes based on
interfaces being designed within the TSTT SciDAC Center.

• FEMDiscretization – L.F. Diachin (SNL, formerly ANL) – classic –
Provides finite element discretization of diffusion and advection PDE 
operators and linear system assembly capabilities.

• GrACEComponent – J. Ray (SNL) – classic – Provides parallel AMR 
infrastructure, which follows a hierarchy-of-patches methodology for 
meshing and includes load-balancing; based on GrACE (Rutgers); being 
used in combustion applications within the SciDAC CFRFS project.
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Component Inventory:
Integration, Optimization, and Linear Algebra

• CvodesComponent – Radu Serban (LLNL, TOPS collaborator) –
classic – Provides a generic implicit ODE integrator and an implicit 
ODE integrator with sensitivity capabilities; based on CVODES; 
used in combustion applications within the CFRFS.

• TaoSolver – S. Benson, L.C. McInnes, B. Norris, and J. Sarich
(ANL) – SIDL – Provides solvers for unconstrained and bound 
constrained optimization problems, which build on infrastructure
within TAO (ANL); uses external linear algebra capabilities.

• LinearSolver – B. Norris (ANL) – classic – Provides a prototype 
linear solver port; in the process of evolving to support common
interfaces for linear algebra that are under development within the 
TOPS SciDAC center.
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Component Inventory:
Parallel Data Description, Redistribution, and 

Visualization

• DistArrayDescriptorFactory – D. Bernholdt and W. Elwasif (ORNL) –
classic – Provides a uniform means for applications to describe dense 
multi-dimensional arrays; based upon emerging interfaces from the 
CCA Scientific Data Components Working Group.

• CumulvsMxN – J. Kohl, D. Bernholdt, and T. Wilde (ORNL) – classic –
Builds on CUMULVS (ORNL) technology to provide an initial 
implementation of parallel data redistribution interfaces that are under 
development by the CCA “MxN” Working Group.

• VizProxy – J. Kohl and T. Wilde (ORNL) – classic – Provides a 
companion “MxN” endpoint for extracting parallel data from component-
based applications and then passing this data to a separate front-end 
viewer for graphical rendering and presentation. Variants exist for 
structured data and unstructured triangular mesh data as well as text-
based output.
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Component Inventory:
Services, Graphical Builders, and Performance

• Ccaffeine Services – B. Allan, R. Armstrong. M. Govindaraju, S.
Lefantzi, and E. Walsh (SNL) – classic and SIDL – Services for 
parameter ports, connections between SIDL and classic ports, MPI
access, connection events, etc.

• Graphical Builders – B. Norris (ANL) and S. Parker (Univ. of Utah) 
– Prototype graphical builders that can be used to assemble 
components, set parameters, execute, and monitor component-
based simulations.

• Performance Observation – S. Shende and A. Malony (Univ. of 
Oregon), C. Rasmussen and M. Sotille (LANL), and J. Ray (SNL) –
classic and SIDL – Provides measurement capabilities to 
components, thereby aiding in the selection of components and 
helping to create performance aware intelligent components; based 
on TAU (Oregon).
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Applications: Computational 
Chemistry

• Molecular Optimization

• Investigators: Steve Benson (ANL) 
Curtis Janssen (SNL), Liz Jurris
(PNNL), Manoj Krishnan (PNNL), 
Lois McInnes (ANL), Jarek 
Nieplocha (PNNL), Boyana Norris 
(ANL), Jason Sarich (ANL), Theresa
Windus (PNNL)

• Goal: Demonstrate interoperability 
between packages, develop 
experience with large existing code 
bases, seed interest in Chemistry 
domain

• Problem Domain: Optimization of 
molecular structures using quantum 
chemical methods

• Advanced Software for the 
Calculation of Thermochemistry, 
Kinetics, and Dynamics

• SciDAC BES project, Al Wagner PI

• Investigators: Ronald Duchovic
(Indiana-Purdue Fort Wayne),
Wael Elwasif (ORNL), Lois
McInnes (ANL), Craig Rasmussen 
(LANL)

• Goal: Develop a standard interface 
to provide numerical potential 
energy surface information to 
reaction dynamics codes

• Problem Domain: Reaction 
dynamics
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Scientific and Technical 
Summary

Molecular Optimization
• Decouple geometry 

optimization from electronic 
structure

• Demonstrate interoperability of 
electronic structure 
components

• Build towards more challenging 
optimization problems, e.g., 
protein/ligand binding studies

• Software: 
– Electronic structure: MPQC,

NWChem, 
– Optimization:TAO
– Linear algebra: Global Arrays, 

PETSc

Reaction Dynamics
• Software: POTLIB
• Developing a component 

interface for POTLIB
– Original interface makes 

extensive use of Fortran 
common blocks
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Applications: Climate Modeling
Community Climate 

System Model

• SciDAC BER project, 
John Drake and Robert 
Malone PIs 

• Goals: Investigate 
model coupling and 
parameterization-level 
componentization within 
models

Earth System Modeling 
Framework

• NASA project, Tim 
Killeen, John Marshall, 
and Arlindo da Silva PIs

• Goal: Build domain-
specific framework for 
the development of 
climate models

• Investigators: John Drake (ORNL), Wael Elwasif (ORNL), 
Michael Ham (ORNL), Jay Larson (ANL), Everest Ong 
(ANL)
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Community Climate System 
Model

• Model Coupling Toolkit 
(MCT)
– Coupler for CCSM
– Basis for ESMF coupler
– Contributions to MxN
– River runoff model

• Community Atmosphere 
Model (CAM)
– Componentization at 

physics/dynamics 
interface
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Earth System Modeling 
Framework

ATM OCN

Courtesy Shujia Zhou, NASA Goddard

• Prototype superstructure
• Investigating grid layer 
interfaces



CCA
Common Component Architecture

46School of Computing, University of Utah9 April 2003

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming 
environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of 
algorithms/physics from data
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What the CCA is…
(a.k.a. Summary)

• CCA is a specification for a component environment
–Fundamentally, a design pattern
–Multiple “reference” implementations exist
–Being used by applications

• CCA increases productivity
–Supports and promotes software interopability and reuse
–Provides “plug-and-play” paradigm for scientific software

• CCA offers the flexibility to architect your application as 
you think best

–Doesn’t dictate component relationships, programming models, etc.
–Minimal performance overhead
–Minimal cost for incorporation of existing software

• CCA provides an environment in which domain-specific 
application frameworks can be built

–While retaining opportunities for software reuse at multiple levels


