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Spontaneous Parametric Down-Conversion (SPDC)

* Spontaneous decay of a pump photon into a pair of lower energy
photons in a transparent non-centrosymmetric crystal

* Total energies and momenta are conserved (phase matching condition)
* Good source of non-classical (entangled) light

| type-I phase matching: the photon pair has the same polarization:
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type-II phase matching: the photon pair is orthogonally polarized:
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Quantum state of SPDC

Ideal case: assumes perfect phase matching and a monochromatic pump
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* photon pair is perfectly entangled in energy and momentum

* infinite two-photon coherence time

In reality, phase matching is not perfect even with a monochromatic pump
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SPDC Correlation Function (Wavepacket)

1st order correlation function:
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Wiener-Khintchine theorem: the autocorrelation.
function of a stationary random process and the power
spectrum of the process form a Fourier transform pair.

2nd order correlation function:
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@ 1st and 2nd order corelation functions (or wavepackets) may have quite
different shapes. For example, G (7) does not get affected by the
introduction of a medium with a group velocity dispersion, but G?)(r) gets

broadened by it.



Single-photon and Two-photon wavepacket calculations

Single-photon wavepacket: consider a Michelson interferometer.
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Two-photon wavepacket: consider a SA/HOM interferometer.
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Single-photon and Two-photon wavepacket calculations
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(BBO = 2mm thick; 351.1 nm pump, 702.2 nm SPDC)



Experimental Setup
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¢ Used only when measuring G (7). ¢ D3: for measuring G (7).
Removed when measuring G®) (7). Di1-D2: for measuring G (7).

BBO = 2mm thick; 351.1 nm pump; 702.2 nm SPDC.
All quarter-wave plates oriented at 45 deg.
All half-wave plates oriented at 22.5 deg.



Experimental Data

type-II SPDC
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* Data agree well with theory.

type-1 SPDC
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Accidental
* Fig. (a) agrees well with theory. Coincidence
* (b) 3nm filters; (c) 20 nm filters; (d) 8o nm filters.
* Fig. (d) does not agree with theory.



Discussion: type-I SPDC

Angles defined by the detector apertures

** Fig.(a) suggests that the power / \
spectrum is not limited by the |
detector apertures. 782

% Fig.(d) however suggests that the
two-photon bandwidth is limited
by the detector apertures.
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351.I nm — 702.2 M + 702.2 NMm

pair detection event!

351.I nm — 662 nm + 748 nm

click! no-detection

No coincidence count —> Reduced two-photon bandwidth!



Summary

Calculated and Measured one-photon and two-photon
wavepackets of type-I and type-1I SPDC.

Two-photon wavepacket of type-I SPDC was broader than the
theoretically expected value: although the power spectrum is
not limited by the apertures, the two-photon bandwidth may
still be limited as joint-detection events has to be considered.

For broadband type-1 SPDC, one-dimensional theory does not

work well: the tuning curve characteristics should be considered.

When utilizing energy and momentum entanglement of type-I
SPDC photon pairs (e.g. quantum metrology), care must be
taken not to over-estimate the two-photon bandwidth.
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