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Abstract 
 
Heat pump water heaters can cut electricity consumption by half, as comparing to the 
conventional electric resistant water heaters.  A conventional heat pump water heater (HPWH) 
usually has a water circulating pump to sample water temperature every 15 minutes in the tank, 
and to draw water to a condenser-water heat exchanger outside the tank, if water temperature is 
below the set point.  The pump would be on at least once every 15 minutes, 24 hours a day.  The 
novel design presented in this study was to insert the condenser coil through the opening on the 
top of the water tank.  This design eliminated the need of the water circulating pumps, and may 
improve the efficiency of the HPWH by eliminating pumping power. 
 
Two types of condenser coil designs were considered; one was a bayonet tube (tube-in-tube) and 
one was the “U” tube.  Previous test data indicated that “U” tube design performed better than 
the bayonet tube condenser coil, and thus only “U” tube condenser coil was considered in the 
study. 
 
With straight “U” tubes inserted into the tank, it was found that the convective heat transfer was 
not strong enough to break water temperature stratification in the tank, which resulted in a 
temperature differential of 16ºC (30ºF) from top to bottom.  However, when the coil was built in 
an“L” shape, the water stratification disappeared.   A computational fluid dynamics code, CFD, 
was used to study the straight and “L” shaped condenser coils.  Results from CFD simulation 
were compared with the experimental data and found to be close to each other. 
 
Nomenclature 
 
CFD : Computational fluid dynamics;  
COP : Coefficient of performance;  
G : Gravity;  
HPWH : Heat pump water heater;  
T : Temperature;  
∆T : Temperature difference;  
t : Time;  
P : Pressure;  
ur  : Velocity vector;  
 
Greek symbols 
ν : Kinematic viscosity;  
α : Thermal diffusivity;  
ρ : Density;  
β : Thermal expansion coefficient;  



Introduction 
 

There are two popular types of residential water heaters used in the American market: direct gas fired and 
electric resistance. Nationwide, sales of gas fired water heaters hold a slight majority with ~54 percent of the market, 
with the remaining 46 percent being almost entirely electric resistance units.  In the year 2000, just over 9.2 million 
total residential water heaters were sold that year, yet only about 2,000 of which were HPWHs [1,2,3].  Heat pump 
water heater, however, only finds good market in tropical climate region where mild temperature provides high 
HPWH efficiency. 

Many HPWHs adopt pumps to circulate water from the storage tank through the heat pump condenser for 
water heating.  Because of the frequent on/off cycling of the pumps and high temperature operating conditions, the 
pump reliability may be compromised.  It would be costly to replace the water pumps.  The design reported in this 
study eliminates the pump by directly immersing the condenser coil through an opening on the top of the tank 
without any major change of current tank design.  The novel concept could potentially be less expensive than 
present designs  and more efficient because of the elimination of the pump and a heat exchanger.  

Preliminary test data showed that a vertical condenser coil inserted into the tank resulted in water 
temperature stratification within the tank, as high as 20˚C (36˚F) temperature differential from top to bottom, 
regardless of heat flux [3].  The refrigerant condensing temperature was high because of the inefficient heat transfer 
between water and refrigerant caused by the temperature stratification, which in turn caused high compressor 
operating pressure.  The temperature stratification also damped the convective water circulating with in the tank [3].  
If the temperature stratification could be eliminated, the heat pump could be operated more efficiently with lower 
discharge pressure.   In this study, a hockey stick like “L” shape condenser coil was designed to reduce, or eliminate, 
the temperature stratification inside the tank.  A CFD code was used to simulate the HPWH performance with the 
new condenser coil design.  The CFD calculated data indicated temperature stratification was greatly reduced to 
only 1˚C (2˚F).   

 Evaporator 

Expansion 
Valve 

Compressor 

(a)                         
C

Figure 1 S
a

 
When hea

the force of gravity
induced if an imm
configuration of co

In the pre
on water temperatu
in Figure 1.  In Fig
Flow meter
  

Thermocouple
Rods Thermocouple 

Rods 

                                   (b) 
ondenser Condenser 

chematic of a U-tube condenser immersed in a water tank of HPWH; (a) is a vertical condenser, 
nd (b) is an L-Style condenser [3].   
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evaporator, and condenser immersed in a water tank.  The geometries of condenser include vertical and L-style 
condensers, as is also illustrated in Figure 1(a) and 1(b).   Both types of condenser coils were tested to confirm the 
simulated data. 

 
Physical model and simulation 
 

Buoyancy-driven flow in enclosed spaces has been studied extensively in the past decades in response to 
energy-related applications (e.g. nuclear and solar).  Ostrach (1982) offered a broad review of the work carried out 
prior to 1982.  Schwab and De Witt (1970) were among the first to study natural convection from a single vertical 
rod immersed in a concentric cylinder.  They predicted the effect of geometrical ratio and Prandtl number on the 
Nusselt Number.  Charmchi and Sparrow (1982, 1983) conducted both experiment and simulation of a small inner 
cylinder located at various positions within a concentric cylinder.  Neumann (1990) studied the steady and 
oscillatory convection in rigid vertical cylinders heated from below.  Later work on natural convection in a vertical 
cylinder was primarily concerned with the heat transfer coefficient and correction (Lafortune and Meneley, 1990).  
Up to now, very few cases have been found to investigate thermal stratification reduction and fluid flow field in the 
water storage of HPWH. 

In the current study, a vertical cylindrical enclosure is chosen as a fluid storage tank.  Water is the working 
fluid, which is regarded as an incompressible fluid with constant kinematic viscosity ν, and thermal diffusivity α.  
Natural-convection flow is modeled with Boussinesq approximation during CFD simulation.  In the Boussinesq 
approximation, variations in fluid density are ignored, except insofar as they give rise to a gravitation force.  
Therefore, fluid density is treated as a constant value in all solved equations, except for the buoyancy term in the 
momentum equation:  

( ) ( gTTg 000 −−≅− )βρρρ  (1) 
where ρ0 is the constant density of flow, T0 is the operating temperature, and β is the thermal expansion coefficient.  
The above equation is obtained by using the Boussinesq approximation ρ= ρ0 (1 - β∆T) to eliminate ρ from the 
buoyancy term.  This approximation is accurate as long as changes in actual density are small.  

Therefore, the continuity of fluid flow then become 
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The Navier-Stokes equation of fluid flow is described as follows 
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The addition of an equation for temperature completes the Boussinesq approximation.  The energy equation is given 
by 
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t
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∂
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At the tank wall, either the no-slip or the shear-free velocity boundary condition is prescribed.  The 
cylindrical sidewall is assumed adiabatic.  The boundary condition at condenser wall was based on heat flux 
obtained experimentally [11].  Tank water and condenser coil temperatures were assumed constant and were 
measured experimentally. 

The buoyancy-driven flow in the present case is considered as a transient process.  All simulations are 
conducted under three-dimension modeling.  In the phase of CFD simulation, two geometry types of condensers are 
considered: vertical and L-style heated rods.  To simplify and save computational time, the condenser is assumed to 
be a single heated rod.  The diameter of the rod is 0.03M.  The length of rod is 1.14M.  Water tank height is 1.27M, 
and its diameter is 0.5M.  The heat capacity is assumed as constant.   

Figure 2 illustrates the velocity vector profile of buoyancy-driven flow caused by a condenser immersed in 
a water tank after 30 minutes of heating.  In figure 2(a), it shows that buoyancy-driven flow is produced and moves 
up along the vertical heating surface when the vertical condenser is employed.  Unlike the situation of a vertical 
condenser, significant mixed convection through the entire water tank is created when a L-style condenser is 
immersed in the tank.  The difference is totally produced due to mixing caused by the extended non-vertical part of 
the L-style condenser.   



To understand the process of buoyancy-driven flow caused by an immersed condenser in a water tank, a 
symmetric 2D cut-plane was employed to describe the movement of the buoyancy-driven flow.  Figure 3 plots the 
2D velocity contour of the buoyancy-driven flow caused by a vertical immersed condenser at 30min and at 60min.  
It clearly illustrates that a laminar buoyancy-driven flow is formed in the water surrounding the vertical condenser.  
This water thus rises up because of the force of gravity acting on the density variations.  The majority of water in the 
tank, however, still has not been affected by the convective flow, except at the top and the layer surrounding the 
surface of a heated condenser.  Meanwhile, the motion of the buoyancy-driven flow is gradually reduced with the 
increase of heating time, as the velocity profile of Fig. 3(b) is less than that of Fig. 3(a).  Figure 4 illustrates the 
transient temperature contour in the water tank.  Significant temperature stratification is produced due to the 
buoyancy-driven flow.  When the water surrounding the vertical condenser is heated, this water is forced to rise up 
due to the buoyancy.  After hot water reaches the top of water tank, it exchange heat with cold water below through 
thermal diffusion only.  Thus significant temperature stratification in water tank is formed from top to bottom.  From 
Figures 4(a) and 4(b), it is observed that the temperature stratification in the tank is a strong function of time.  

 
 

(a)     (b) 

Figure 2 The velocity (m/s) vector profile of buoyancy-driven flow caused a condenser immersed in a 
water tank; (a) vertical condenser; (b) L-style condenser.  

 
 

(a)      (b) 

Figure 3 The velocity (m/s) contour of buoyancy-driven flow along a symmetric cutplane; (a) at 30min; 
(b) at 60min; the condenser is vertical.  



 
(a)      (b) 

Figure 4 The temperature (˚K) contour of buoyancy-driven flow along a 
30min; (b) at 60min; the condenser is vertical.  
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Figure 6 Temperature (˚K) contour of buoyancy-driven flow along a symmetric cut-plane; (a) at 30min; 
(b) at 60min; the condenser is L-style.  
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(a)      (b) 
Figure 7 Tank temperature (˚K) comparisons of testing data and predicted result; Red line is testing data; 

Black line is simulated data; (a) vertical case; (b) L-style case.  
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Figure 8.   Comparisons of system COP and condenser heat transfer coefficient, (a) vertical condenser;  
                 (b) L-style condenser 

 
Figure 8 shows the comparison of system COPs and heat transfer coefficients with vertical and L-shape condensers.  
Clearly, the L-shape has much higher heat transfer coefficients, which resulted in higher COP than that of the 
vertical condenser. 
 
Conclusions 
 

A CFD code was used to study water temperature stratification inside a water tank that was heated by a 
heat pump.  The temperature stratification was caused by the shape of the condenser coil that was inserted into the 
tank from an opening on the top of the tank. 
 Two different condenser coils, one vertical and an “L” shape, were analyzed and tested.  The CFD 
simulated data indicated that the vertical coil would result in water temperature stratification.  But, the L shaped coil 
showed the breaking up of the stratification and resulted in a very uniform water temperature inside the tank.  Test 
data confirmed the simulated results.  This study will be useful for future designs of heat pump water heaters that 
employ internal condensers. 
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