A Framework for
Check-pointed
Fault-Tolerant
Out-of-Core
ScaLAPACK LU
Factorization™

E.E. D’Azevedo’, P. Luszczek*

1 Introduction

This paper presents a framework for breaking down time consuming large scale

out-of-core ScaLAPACK LU factorization into a sequence of simple micro-instructions.

These simple instructions encode subroutine arguments and ScaLAPACK array
descriptors and can be easily mapped to subroutines in the ScaLAPACK library
or to perform disk I/O operations. A simple driver examines the complete list of
micro-instructions to determine the computations and I/O required to check-point
or restart the computation. Updates are first written to a temporary location and
then into the restart disk file. Writing the data in two steps provides extra protec-
tion against failures. Numerical experiments on a Linux cluster demonstrated that
the check-point and restart capability incured about 3% additional overhead above
the version without check-point capability. This approach of using simple micro-

*The submitted manuscript has been authored by a contractor of the U.S. Government under Con-
tract No. DE-AC05-000R22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes.

fComputer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN
37831, e6éd@ornl .gov.

iDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996,
luszczek@cs.utk.edu.

2003/4/2
page
— P



instructions can be generalized for check-pointing other time consuming compu-
tations such as QR or Cholesky factorization.

Large dense linear problems arise from many scientific areas such as mod-
eling the effect of radio-frequency heating of plasmas in fusion applications [4],
modeling high-resolution three-dimensional wave scattering using boundary ele-
ment formulation [1, 3], in the cosmic microwave background data analysis!, and
modeling neutrino scattering on lattices as part of the Terascale Simulations of Su-
pernovae (TSI)2.

This work builds upon the ScaLAPACK out-of-core® extension [2] for LU fac-
torization by adding a check-point and restart capability for long running com-
putations. The out-of-core extension of ScaLAPACK enables the solution of large
problems several times larger than available physical memory by storing the fac-
tors on disk. The computational cost for dense LU factorization increases as O(N?)
whereas the required storage increases as O(N?). Thus a ten-fold increase in stor-
age amplifies the computational work by 1032 = 31.6. Although most in-core
LU factorizations complete within an hour, some large scale out-of-core computa-
tions can require several days. Most high performance computing facilities limit
the runtime of individual jobs (say 12 or 24 hours) and typical mean time between
failure (MTBF) for large clusters is also about several days. Therefore, a robust
check-point and restart capability is of great value for long running computations.

Section 2 briefly describes the out-of-core ScaLAPACK software and the portable

software layer to perform disk I/O. Section 3 describes the micro-instructions in
more detail. The two-step process for updating the restart file is described in Sec-
tion 4. Numerical experiments on a Linux cluster and described in Section 5. We
summarize our findings in Section 6.

2 Out-of-core ScaLAPACK

The out-of-core ScaLAPACK LU factorization uses a ‘left-look” algorithm to reduce
the volume of 1/0 required for write operations. The full matrix is stored on disk
and overwritten by the LU factors. Since pivoting is required, the algorithm uses
two in-core column panels, called X and Y panels. Panel X acts as a buffer to hold
and apply previously computed factors to panel Y using Parallel BLAS (PBLAS)*.
Once all updates are performed, panel Y is factored using the in-core ScaLAPACK
PxGETRF routine. The results in panel Y are then written back to disk. Panel X
is chosen to be wide enough to achieve good I/O performance and the remaining
bulk of available memory should be allocated to panel Y. This strategy reduces the
volume of I/O by minimizing the number of passes over the previously computed
factors. The volume of I/O data transferred is usually dominated by reads instead
of writes.

The I/0 to disk is performed by a portable high level software layer. Disk

1ScaLAPACK is used by the Microwave Anisotropy Dataset Computational Analysis Package
(MAPCAP), for details see www . nersc.gov/~borrill/cmb/madcap/.

2ScaLAPACK is used in OAK3D, for details see www . phy .ornl .gov/theory-astro/scidac/.

3The software is available at www . netlib.org/scalapack/prototype/index.html.

4For details see wvw .netlib.org/scalapack/pblas_qgref._html.

2003/4/2
page
— P



dl aread

101551396 99990079200000000000000000000000000
0 11 1155 396 397 397 1 397 1 000000 0. O

pdtrsm

10 1551 396 99 99 0 0 792 0 0 0 1 0 1551 396 9999 00792 0000000000
000O0O0 76 76 78 85 99 396 1 397 1 156817 397 1 0 0 1. O.

pdgemm

1 0 1551 396 99 99 0 0 792 0 0 0 1 0 1551 396 99 99 0 0 792 0 0 0 1 O 1551 396
99 99 0 0 792 0 0 O 78 78 1056 396 99 1 496 1 156817 397 1 156817 496 1 -1.

1.

Figure 1. Example of micro-instructions

I/0 is conceptually record oriented where each record is an MVB x NNB ScaLA-
PACK block-cyclic distributed matrix. Moreover, if the matrix is distributed with
(MB, NB) as the block size on a P x Qprocessor grid, then mod(MVB, MB* P) = 0 and
mod(NNB, NB « Q) = 0, i.e. MVB (and NNB) are exact multiples of MB* P (and NB* Q).
Individually, each processor writes out a (MVB/P) x (NNB/Q) matrix block. Data
to be transferred is first copied or assembled into an internal temporary buffer
(record). Message communication may be needed to reposition data on the ap-
propriate processor for ‘unaligned” data transfer. This arrangement encourages
large contiguous block transfer, but incurs extra overhead in memory to memory
copies. The matrix factors may be stored internally on multiple files to overcome a
2 GBytes/file limit on machines with 32-bit | seek file pointers.

3 Micro-instructions

The key idea in implementing the check-point and restart capability is the use of
micro-instructions. The time-consuming computation is broken down into sim-
pler instructions. Each instruction is mapped to a high level subroutine call such
as reading in or writing out a panel, or performing an update computation us-
ing PBLAS, or performing an in-core factorization using ScaLAPACK. The instruc-
tion encodes the subroutine name with the complete list of arguments including
ScaLAPACK array descriptors, matrix indices and offsets. Figure 1 shows an ex-
ample of the micro-instructions. The instructions are emited by a modified version
of the out-of-core subroutines and may be considered a limited application specific
scripting language. Commonly, only several hundred instructions are used even
for a large problem.

A simple driver program reads in the list of instructions and the range of
instructions to process. The driver executes each micro-instruction by directly call-
ing the corresponding subroutine call. The computation can be started or paused
at any position in the instruction mix. The driver can easily determine the neces-
sary I/O to restore or check-point by examining the complete list of instructions.
It can look backward in the instruction mix for the most recent ‘read” instruction
to restore the panel X in memory and look forward ahead to find the next ‘write’
instruction for panel Y. This approach greatly simplifies the code and logic needed
for performing check-point and restart.

4 Writing in Two Steps

To guard against unexpected machine failures, the factored panel Y is written out
in two steps. The panel is first written out to a temporary location. During this
time the out-of-core matrix is still unaffected. Even if the write fails, the overall
computation can be recovered by repeated (redundant) recomputation of panel Y.

2003/4/2
page
— P



If this first write is successful, the out-of-core matrix is then updated with panel Y.
If a failure occurs during this time, the intact data in the temporary location can be
used for recovery. Other zero length empty files are used to mark I/O progress. For
example, the existence of file 00143a. dat (00143b. dat) indicates the first
(second) write is successful for instruction 143.

However, there are still limitations in the recovery process. If the data is
written to a local file system (commonly / t mp on a Linux cluster), the same set of
processors must be used for restarting the computation. The correct assignment
of MPI tasks to the processor grid is determined at runtime and reconfigured us-
ing BLACS_GRI DIVAP. The software assumes data written to disk is automatically
‘flushed” or ‘sync-ed’ to disk after the file is closed. Delayed writes may cause
problems during a machine crash if the data is still cached in memory.

5 Numerical Experiment

The check-point and restart capability imposes a very low overhead on the original
ScaLAPACK out-of-core solver. The software was tested on the TORC Linux clus-
ter’. Each compute node was configured as a 2 Ghz Pentium 4 with 768 MBytes of
memory, 30 GBytes IDE local disk. Although both 100 Mbit/s ethernet and Gigabit
ethernet connections were available, the software used LAM /MPI over 100 Mbits
ethernet. ScaLAPACK version 1.7 and ATLAS BLAS (non SSE2) were used. About
288 MBytes of memory was allocated as work space for the out-of-core LU solver.
Matrix size was 56, 000 x 56,000 (REAL* 8) with block size (MB = NB = 50).

On a 2 x 2 processor grid, the original version without check-point capa-
bility took about 31274 sec (8.69 hr), whereas the check-point version took about
32210 sec (8.95 hr), or about 3% overhead for processing the micro-instruction and
updating the disk file in two steps. Overall performance was about 913 Mflop/s
per cpu in the version using check-pointing. The same matrix was solved us-
ing in-core ScaLAPACK routines on a 7 x 7 processor grid, which required about
512 MBytes per cpu, in about 3012 sec (0.84 hr). Overall performance was about
793 Mflop/s per cpu. Time to read in the matrix across all processors was about
30 sec or about 17 MBytes/s per cpu. Time for writing out the matrix was about
44 sec or about 11.6 MBytes/s per cpu. As observed in [2] and [5], the perfor-
mance of the out-of-core solver was higher than the in-core solver since most of
the computation was performed in large blocks, whereas the remaining submatrix
size decreases rapidly for the in-core solver.

6 Summary

We have presented a check-point and restart enhancement to the ScaLAPACK out-
of-core LU factorization. The approach was to generate simple micro-instructions
that can be easily mapped to high level I/O and ScaLAPACK subroutines. A sim-
ple driver can then easily examine the entire instruction list to determine the I/O
and computation needed for check-point and restart. Writing the data in two steps

5Tennessee Oak Ridge Cluster Project (TORC), for details see www.csm_ornl _gov/TORC/.

2003/4/2
page
— P



2003/4/2
page
— P

provides extra protection against unexpected failures. Performance on a Linux
cluster suggests the new version imposes very low overhead. The same approach
can be easily extended to other time consuming computations such as Cholesky or
QR factorization.



(1]

(2]

Bibliography

T. CWIK, R. VAN DE GEIJN, AND J. PATTERSON, The application of parallel com-
putation to integral equation models of electromagnetic scattering, Journal of Optical
Society of America A, 11 (1994), p. 1538.

E. D’AZEVEDO AND J. DONGARRA, The design and implementation of the par-
allel out-of-core scalapack LU, QR, and Cholesky factorization routines, Concur-
rency:Practice and Experience, 12 (2000), pp. 1481-1493.

P. GENG, J. T. ODEN, AND R. VAN DE GEIJN, Massively parallel computation for
acoustical scattering problems using boundary element methods, Journal of Sound
and Vibration, 191 (1996), p. 145.

E. F. JAEGER, L. A. BERRY, E. D’AZEVEDO, D. B. BATCHELOR, AND
M. D. CARTER, All-orders spectral calculation of radio-frequency heating in two-
dimensional toroidal plasmas, Physics of Plasmas, 8 (2001), pp. 1573-1583.

W. C. REILEY AND R. A. VAN DE GEIJN, POOCLAPACK: Parallel out-of-core
linear algebra package, Tech. Rep. 99-33, Department of Computer Science, The
University of Texas, Austin, Texas, 1999. (also available as PLAPACK Working
Note #10).

2003/4/2
page
— P



