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ABSTRACT

This paper is concerned with the detection of physical flaws on pipe walls in gas pipelines. The sensor technology is
EMAT (electromagnetic acoustic transducer), a non-contact ultrasonic technology. One EMAT is used as a transmitter,
exciting an ultrasonic impulse into the pipe wall. Another EMAT located a few inches away from the first is used as a
receiving transducer. This paper reports on the identification of flaw signatures in the receiver output. The first step in
flaw characterization is to perform wavelet analysis of the signature. Being non-shift-invariant, an array of coefficients
of a discrete wavelet transform of a signal is not directly suitable as a pattern recognition feature. However, comparing
composite properties of the signal on different scales is useful, because the mode conversion caused by a flaw, changes
the composite properties of the signal in wavelet space. For EMAT data, the useful information projects onto five
mutually orthogonal wavelet scales. This paper reports on the use of a robust 17-dimensional feature vector that
consistently distinguishes “flaw” signatures from “no-flaw” signatures in a substantial collection of experimental data.
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1. NON-DESTRUCTIVE TESTING OF GAS PIPELINES

Approximately 30% of the energy produced in the United States is derived from natural gas. Accordingly, the integrity
of the natural gas supply system is of prime importance. Natural gas is supplied to users through a vast pipeline network
that consists of over a million miles of pipeline.' Pipeline companies have an impressive safety record due to the
proactive role they have taken in establishing standards and in the inspection of pipelines. Many of the pipelines are
aging, and there is a great need for a way to identify cracks, corrosion, and other defects that can potentially cause
problems.

A gas pipeline can fail due to many causes. Some of the most common failure modes are corrosion, pitting, stress
corrosion cracks, seam weld cracks, dents, and other flaws induced by external impact from earth-moving equipment.
Ideally, it would be desirable to detect all of the above flaw types with a single inspection technique. Unfortunately,
there is no one inspection technique that is ideally suited to detect all of the possible flaw types. Hence, the gas industry
uses a combination of techniques to ensure the safety margin for their operation. Probabilistic approaches have been
used for estimating pipeline integrity.” Probabilistic methods attempt to predict safety using crack rate growth data,
inspection frequency data, and the operating parameters of the pipe. Probabilistic methods, however, require valid
statistical data on flaw rate occurrences and distributions to be of any real use. Hence, the need persists to be able to
collect accurate data on the actual condition of the pipelines in service.

There are two main methods of testing the integrity of pipelines; destructive inspection and non-destructive inspection
(NDI.) The destructive inspection procedure generally uses a hydrostatic technique to verify that the pipeline integrity is
within the safety margin for operation. The procedure does not, however, locate defects that are just below the threshold
of safety. In addition, destructive testing disrupts the pipeline’s normal operation. For this reason it is not the preferred
method. Generally, such techniques are good for the initial inspection of pipelines before they are put into use. On the
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other hand, NDI techniques can detect developing flaws that can cause failures in the future. Thus, NDI provides a
quantitative measure of the integrity of the pipeline as well as a measure of its current safety margin.

Some types of defects that can occur in pipelines are a serious threat to the safety of the pipeline. Stress corrosion
cracking, for example, can occur at any time in the life of the pipeline, and it occurs under a broad range of field
conditions. This type of defect is usually oriented along the axial (Ilengthwise) direction of the pipe. If not detected early,
the cracks may grow and/or coalesce, eventually resulting in a leak or rupture of the pipe. Not all defects that develop in
pipelines threaten the integrity of the pipeline. Benign, internal inclusions are common and do not pose a serious threat
to the integrity of the pipeline. NDI systems are urgently needed that can (1) provide early detection of the more serious
defects; (2) differentiate between the serious defects and benign inclusions; and (3) characterize the type and size of the
defects for repair or replacement management.

A promising new sensing technology is the use of guided ultrasonic waves for detecting the defects that occur in
pipelines. One major benefit of ultrasonic guided waves is their ability to travel longer distances in the pipe wall than the
signals from other sensing technologies, and this enables them to inspect the structure line-by-line instead of point-by-
point. As the guided waves travel through the pipe walls, they are affected by the features they encounter. In particular,
the mode structure of the propagating ultrasonic wave is modified in specific ways depending on the specific flaw type
encountered by the wave.’ The received signals contain much information regarding the nature and sizing of the features
encountered. However, defect detection, classification, and sizing using guided ultrasonic waves is still a major
challenge under investigation due to the complexity of the wave propagation characteristics. A major shortcoming of
many of the previous investigations into the use of ultrasonic guided waves has been the lack of a suitable signal analysis
method to adequately identify the mode conversion produced in the ultrasonic wave by the flaw.

This paper summarizes a preliminary investigation into the use of the discrete wavelet transform as the underlying
methodology for flaw detection using ultrasonic guided waves. This paper describes the generation and detection of
ultrasonic waves using electromagnetic acoustic transducers (EMATS). It then describes the experimental apparatus
used to collect the data. It then discusses the characteristics of wavelets that make them particularly suitable for
addressing the problem at hand, and then reports the results obtained to date using wavelet analysis. It concludes by
suggesting a possible way to extend the analysis to include the classification of flaws by type.

2. ULTRASONIC WAVE GENERATION AND DETECTION USING EMATS

A common method for inducing ultrasonic guided waves in pipe walls is to use piezoelectric transducers. Since
piezoelectric transducers require an incompressible liquid medium (oil, honey, etc.) to transmit the sound energy into the
pipe wall, it is impractical for situations when the sensors are required to travel along the length of the pipe. A non-
contact method for generating ultrasonic waves is required for this purpose. Since the EMAT does not have to be in
physical contact with the pipe wall to induce ultrasonic waves, it is particularly well suited for pipeline inspection. The
EMAT consists of a strong permanent magnet with a coil of wire located between the magnet and the pipe wall. The
permanent magnet creates a static electromagnetic field that extends in a direction perpendicular to the surface of the
pipe wall. When a gated, high-current sinusoidal pulse is passed through the EMAT coil, a dynamic field is created that
is parallel to the pipe wall and perpendicular to the static field. The interaction of the static field and oscillating dynamic
field generates magnetostrictive forces within the surface of the pipe. The forces acting on the surface can generate lamb,
shear, and longitudinal ultrasonic waves in the pipe wall, depending on the configuration of the magnet and the
characteristics of the current flow.*

These waves can propagate over relatively long distances in the pipe wall. Figure 1 illustrates the use of EMATS for
pipeline inspection. In this configuration, one EMAT serves to generate the ultrasonic wave, while the other acts as the
receiver (sensor). Figure 1 illustrates the two EMATS in a transmission mode configuration, where the ultrasonic wave
travels from a source EMAT through the flaw on its way to a separate EMAT used as a sensor. It is also possible to
perform measurements of this type in a reflection mode using a single EMAT as both source and sensor. In this mode of
operation, the received signal is actually a partial reflection of the ultrasonic wave created by the interaction of the wave
with the flaw. All measurements used in this work were obtained using the transmission mode configuration. By using



the through transmission mode whereby the distance between the EMATS is fixed, better correlation was obtained for
the effect of flaws.

There have been many studies devoted to understanding the generation and propagation characteristics of the different
ultrasonic wave types in media such as pipe walls.>*”*’ Shear horizontal (SH) waves have demonstrated their
suitability for use in pipeline inspection because of their simpler dispersion characteristics and their tolerance of the
damping caused by the protective coating present on the inner surface of many gas pipelines.’ It is also desirable to
avoid generating multiple wave modes, since this greatly complicates both the interaction of the waves with the defects
and the signal analysis required to interpret the results. Most of the tests for this study were performed using the n1 mode
SH wave. The particular wave mode induced is dependent upon the frequency of the current signal that is passed through
the EMAT conductor.
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Figure 1. Illustration of through transmission mode ultrasonic wave generation using EMATs
3. EXPERIMENTAL SETUP

Six-foot lengths of 10-inch and 12-inch pipe were obtained for use in collecting the experimental data. To simulate the
presence of cracks in the pipe wall, 0.25-inch-, 0.125-inch-, and 0.006-inch-wide grooves of varying depths were
machined in both the axial and circumferential directions in the pipe walls. The simulated flaws were separated spatially
from the end of the pipe and from each other by several times the spacing between the transmitter and receiver EMATs.
This was done to allow collection of ultrasonic wave signatures containing a minimum number of reflections from pipe
wall features other than the immediate flaw of interest. In additional, a short length of used 10-inch pipe containing
stress corrosion cracking was obtained to allow the collection of data representative of that flaw type.

The EMAT transducers used were designed to fit the inside radius of both the 10-inch and 12-inch pipe. Hardware
fixtures were designed and fabricated for allowing the EMATS to be positioned and traversed along the inside walls of
the pipe. The mounting fixtures also had provisions to vary the gap between the pipe wall and the EMATS. The
EMAT/fixture assembly was held in place by the strong permanent magnet within the EMAT. Figure 2 shows the
transmitter/receiver EMAT pair in both the circumferential and axial geometries. The circumferentially-oriented EMAT
pair shown on the left was used to detect flaws oriented in the axial direction, while the axially-oriented pair shown on
the right was used to detect flaws and weld defects in the circumferential direction.

The EMAT excitation signal was provided by a programmable amplifier/receiver module capable of delivering a gated,
high voltage RF pulse to the transmitter EMAT. The amplifier/receiver module was also equipped with a broadband
receiver amplifier which was used to amplify the signal from the receiver EMAT. The resulting signal was lowpass
filtered and sampled using an analog-to-digital converter. The received signals were recorded on disk and analyzed
offline. Sampling rate was 5-million samples/second. For each trial, ten sets of either 2048 or 4096 samples were
collected, and the ten sets were summed to average out noise. A 512-sample time window was applied to the summed
signal to capture the burst to be wavelet analyzed.

Data were collected on sections of the pipe known to be free of flaws as well as on the sections containing the flaws.
Samples of the signals conditioned as described above for three “flaw” observations and three “no-flaw” observations



are shown in Figure 3. These are bad cases compared to the experimental data as a whole, but the algorithm must
correctly classify the bad cases as well as the easy cases. Figure 3 indicates something of the difficulty of the pattern
recognition problem. To the eye, the “no-flaw” class does not look very different from the “flaw” class.

The signal is strongest when there is no flaw. The signature is reduced in amplitude when it encounters a flaw. Despite
the fact that such changes are obvious in laboratory data collected under carefully controlled conditions, changes in the
received signal amplitude in the time domain data are not a useful feature for identifying flaws in less controlled field
conditions. In actual pipelines, there are other mechanisms besides a flaw that can lead to attenuation of the signal. The
necessary features for flaw detection are those that depend on the mode conversion imposed by the flaw as observed in
the shape of the received signal. Thus, the goal of the signal processing effort was to identify features that can
differentiate between the “flaw” and “no-flaw” cases based on the shape rather than the amplitude of the received pulse.

Figure 2. EMAT Test Fixtures Used to Collect Experimental Data
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Figure 3. “Flaw” and “no-flaw” signatures



4. WAVELET-BASED CLASSIFICATION

A single wavelet-based feature vector consistently separates “flaw” from “no-flaw” samples for all the experimental data
for both 10” pipe and 12”pipe. The wavelet function is a 58-coefficient Least Asymmetric wavelet. The plot of the
wavelet function and the corresponding scaling function are indicated in Figure 4.
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Figure 4. Wavelet Basis Function

For the 12-inch pipe data this particular function is the basis in that it provides the maximum compression of a set of
eighteen samples of “no-flaw” data collected for a variety of axial and circumferential displacements between the
transmit and receive EMATs. Compression is defined as the number of wavelet coefficients required to represent 50% of
the signal energy and 90% of signal energy. The sum of the coefficients is taken across all eighteen samples. This
compression computation was repeated for a wide range of Daubechies wavelets, Daubechies least asymmetric wavelets
and Coiflets.

The power of this algorithm seems to be in the extremely tight compression obtained with this particular wavelet. The
time domain data set consists of 512 samples, and the corresponding wavelet transform also has 512 samples. However,
for the 12-inch pipe signals over 50% of the signal energy is contained in the three largest wavelet coefficients, and over
90% of the signal energy is contained in the thirteen largest wavelet coefficients. In other words, the wavelet is very
similar to the waveform of the actual signal being observed.

The same wavelet was also the most effective compressor for the 10-inch pipe data. 26 samples of the 10 inch “no-flaw”
data were analyzed using the same wavelet technique. For the 10-inch pipe signals over 50% of the signal energy is
contained in the fwo largest wavelet coefficients, and over 90% of the signal energy is contained in the seven largest
wavelet coefficients. It is remarkable that the same wavelet is the best compressor across all the data for both pipe sizes,
various excitation frequencies, and assorted variations in the sensor configuration. This suggests that the experimental
apparatus is collecting very consistent data, and that the wavelet basis is a robust choice. The wavelet is very similar to
the waveform of the actual ultrasonic signal being observed.

The signal is a 512 sample list with the window centered on the approximate center of the peak of the signal of interest.
This is typically in the range of the 350" to the 861* samples in the overall 2048 or 4096 sample data set. Each list of
samples is obtained by summing the ten repetitions for each sample. The wavelet transform of each signal consists of
five wavelet levels. The coarsest scale (256 samples) is noise and can be ignored. There is characterizing information on
each of the other four scales.

The feature vector is 17-dimensional, with four features extracted from each scale plus an error feature. The rationale for
the feature extraction is the idea that the transmitting EMAT launches a single mode into the pipe wall, and if no flaw is
encountered, that single mode is all that arrives at the receiving EMAT. This single mode is relatively tightly
concentrated in time and frequency.



If the signal encounters a flaw, the change in boundary conditions launches several new modes. These modes will have
slightly different frequencies, dispersion (or chirp) rates, phases and propagation rates. Indications of these effects can be
seen in the different wavelet scales.

One feature is an energy feature. This is computed by computing the energy of the signal on a given scale, normalized by
the total energy in the signal. In the “no-flaw” case the single mode will have a higher concentration of energy on a
dominant scale. In the “flaw” case, there will be several modes with frequency spectra spread out over a wider range.
This is seen as a slightly smaller fraction of energy in the dominant scale, and larger fractions of energies on other scales.
Four of the seventeen features are the fraction of energy on each of the four relevant scales.

Another feature is an entropy feature. This is computed by taking the Shannon entropy on each scale. In the “no-flaw”
case the single mode travels at a particular rate and appears relatively compact in time. This compactness can be
measured by the entropy. Smaller entropy implies a more compact signal. In the “flaw” case, there will be several
modes each traveling at slightly different velocities. This is seen at the receive sensor as a longer time duration in the
signal, and is indicated by a higher entropy than the “no-flaw” case. Four of the seventeen features are the entropies on
each of the four relevant scales.

Another feature is a frequency feature. Due to the multiple modes in the “flaw signal” it will have a slightly shifted
frequency spectrum compared to the “flaw” signal. For 12-inch pipe data, this is seen in Figure 5. Here, the red traces are
the magnitude of the discrete Fourier Transform at wavelet level 2 for each of the 23 “no-flaw” signals, and the blue
traces are the are the magnitude of the discrete Fourier Transform at wavelet level 2 for each of the 33 “flaw” signals.

Four of the seventeen features are the peak frequency bins in the left-hand of the Fourier spectra of the wavelet
coefficients on each of the four relevant wavelet scales.
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Figure 5. Magnitude of Fourier Spectra at Wavelet Level 2

Another feature is a phase feature. Phase data for 12-inch pipe are seen in Figure 6. Here, the red traces are the argument
(phase angle) of the discrete Fourier Transform at wavelet level 2 for each of the 23 “no-flaw” signals, and the blue
traces are the are the magnitude of the discrete Fourier Transform at wavelet level 2 for each of the 33 “flaw” signals.
The different modes have slightly different dispersion (chirp) rates. The chirp causes a change in the phase shift of the
received signal. Four of the seventeen features are the slope of the phase at the peak frequency bins in the left-hand of
the Fourier spectra of the wavelet coefficients on each of the four relevant wavelet scales.

The sixteen-dimensional feature vector mentioned above was sufficient to completely separate the 12-inch pipe data.
However, it did not reliably separate the 10-inch pipe data. One additional feature was required. The feature is an “error”
feature. Figure 7 illustrates the idea. It shows the ensemble average for the “no flaw” signals in blue and the “flaw”
signals in red averaged across the entire ensemble of “no flaw” and “flaw” samples respectively. Figure 7 shows these
ensemble averages across the 12-inch pipe data at wavelet level 1.
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Figure 6. Phase of Fourier Spectra at Level 2 Figure 7. Average Signal at Level 1

The classification feature is based on the notion that a “no flaw” signal is expected to look more like an idealized
exemplar (computed as the average “no flaw” signal) than does a “flaw” signal. In the actual classification algorithm, the
exemplar as the ensemble average of all the “no flaw” signatures at wavelet level 2. Then, for each signal, the first step
in the error calculation is the subtraction of the exemplar from the level 2 coefficients. Then the absolute value of each
member of the resulting list is taken. Then the list is summed. Then, to mitigate conditioning problems with the
covariance matrix in the Mahalanobis distance calculation, the sum is divided by 10°. This quotient is the “error,” a
measure of how much the signal does not look like the exemplar. This constitutes the 17" feature.

Classification of each feature vector is determined by the Mahalanobis distance of the feature vector from the cluster
center of the good samples. The cluster center is the mean value of the feature vectors of all the good samples.
Computing the Mahalanobis distance from the cluster center of the bad samples turns out not to add any more useful
information.

The 17-dimension classifier was applied to all the 12 inch pipe data, just as the 16-dimension classifier had been used
previously. The reason for trying this was to assure that the 17™ feature actually added information rather than noise to
the 12 inch pipe classification problem. This proved to be the case. In every instance the 17-dimension classifier
slightly outperformed the 16-dimension classifier.

Like the 16-dimension classifier, the 17-dimension classifier is remarkably robust, considering that some of the data
were collected at 270 kHz and some at 250 kHz. It should also be noted that the data used were collected in three
separate experiments conducted at different times during 2002 and 2003. This was necessary because limitations in the
mounting hardware prevented collecting axial and circumferential data at the same time. Integrating all the data from the
two separate axial flaw tests and the circumferential flaw data collected results in 23 “no-flaw” samples and 33 “flaw
samples. For the “no-flaw” samples the Mahalanobis distances from the good cluster center range from 3.08 to 4.55. For
the “flaw” samples the Mahalanobis distances from the good cluster center range from 5.27 to 119.27. In other words,
for the integrated data set, this classifier completely separates the “flaw” from the “no-flaw” signals.

The same classifier was applied to all three data sets separately. The separation between “flaw” and “no-flaw” signals for
the smaller data sets are quite dramatic. For each of the three data sets, for the “no-flaw” samples the Mahalanobis
distances from the good cluster center are on the order of 2 to 5. For the “flaw” samples the Mahalanobis distances from
the good cluster center are on the order of 10% to 10°.

The same classifier also completely separates the corrosion data sets. The separation between “flaw” and “no-flaw”
signals for this data set is also quite dramatic. For the “no-flaw” samples the Mahalanobis distances from the good
cluster center are on the order of 2 to 5. For the “flaw” samples the Mahalanobis distances from the good cluster center
are on the order of 10% to 10°.



Since the corrosion data were collected at 310 kHz, no attempt was made to integrate it with the 250-270 kHz data
discussed above. In practice, if this algorithm were used in an on-line real-time system, it would be necessary to calibrate
the algorithm by collecting a set of “no-flaw” data and computing a good cluster center for each combination of
frequency, pipe diameter, and pipe wall thickness.

The 16-dimension classifier almost, but not completely separates the flaw from no flaw data for 10-inch pipe. However,
the 17-dimension classifier completely separates the 10-inch pipe data. A composite data set of all the 10-inch pipe data,
except for those “no flaw” signals where the tone burst overlapped the signal of interest was tried first. For this
composite, across all flaw types for the 10 inch data, the algorithm completely separates “flaw” from “no flaw”
signatures. Flaws were of all types: corrosion data collected in 2002, stress corrosion crack data collected in 2002 and
2003, axial flaw data collected in 2003, and 2003 circumferential flaw data collected in 2003.

The algorithm was also tried on each of the four flaw types in isolation. Given “flaw” and “no flaw samples” for the 10-
inch pipe circumferential flaw data collected in 2003, the 17-dimension algorithm completely separated “flaw” from “no
flaw” signatures. Given “flaw” and “no flaw samples” for the 10-inch pipe axial flaw data collected in 2003, the 17-
dimension algorithm completely separated “flaw” from “no flaw” signatures. Given “flaw” and “no flaw samples” for
the 10-inch pipe stress corrosion crack data collected in 2003 combined with the 10-inch pipe stress corrosion crack data
collected in 2002, the 17-dimension algorithm completely separated “flaw” from “no flaw” signatures; this speaks to the
robustness of the algorithm since the 2002 data were collected at 270 kHz excitation, and the 2003 data were collected at
250 kHz excitation. Given “flaw” and “no flaw samples” for the 10-inch pipe corrosion data collected in 2002, the 17-
dimension algorithm completely separated “flaw” from “no flaw” signatures; in this case the “no flaw” samples had the
tone burst overlapping the signal but the classifier worked anyway.

5. SOPHISTICATED SIGNAL PROCESSING

It might be asked if there is anything to be gained by using more costly signal processing algorithms than wavelet
analysis. The data were examined in wavelet packet space. The “best basis” wavelet packet is considerably more costly
than the wavelet transform because the signal is projected onto a variety of wavelet packet bases and the basis that
produces the minimum entropy is taken as the “best basis.” It was found that the compression of the “no flaw” signals by
the “best basis” wavelet packet for 12-inch pipe data was only slightly superior to the wavelet transform. For the 10-
inch data, the wavelet transform itself (a degenerate case of the more general wavelet packet) turned out to be the best
basis. In other words, the 58-coefficient least-asymmetric wavelet already looks so much like the signal under test that it
is not worth the considerable added computational cost to find a wavelet packet function that looks slightly more like the
signal.

Another powerful way to analyze ultrasonic signals is by the use of Bayesian parameter estimation. It can be highly
useful in situations for which wavelet-based techniques are not adequate. This is especially true for situations in which
the signal of interest is weak and it is biased by a very strong signal. This is the case for laser-generated Lamb waves, for
which t}}g large biasing signal can be subtracted out using Bayesian parameter estimation without disturbing the signal of
Interest.

This situation also arises in EMAT data when the transmitter and receiver are very close together. In this case the very
strong tone burst overlaps the much weaker flaw signature, and results in a signal that can confuse a wavelet-based
classifier. Bayesian parameter estimation is very effective at identifying the tone burst and allowing it to be removed
from the test data so that the residual can be classified with a wavelet-based classifier.

This technique is very computationally costly. It requires a global optimization of an objective that is pockmarked with
local minima. For representative signals with the tone burst overlapping the flaw signature, several global optimizers
were applied to the Bayesian algorithm. The Bayesian algorithm fits the experimental data to a Gaussian-windowed
linear-chirped sinusoid, and provides four parameter values, carrier frequency, chirp rate, window width, and location of
window peak.



The most reliable optimizer was the simple genetic algorithm (GA). It typically requires approximately 40,000 function
evaluations (40 generations and a population of 1000) to obtain convergence. A 32-bit string is used, and each
parameter is allocated eight bits. For this problem, the population was considered to have converged if the median fitness
value is at least 97% of the maximum fitness value. In other words, convergence is defined as at least half the
population having fitness values within 3% of the fitness value of the fittest member.

As is typical of simple GAs, it is crucial to use a large population if the convergence is not to be sensitively dependent
on the tunable parameters used in the GA operators. A population of 100 never converged reliably. With a population of
2000, and tournament selection, reliable convergence was obtained for selection pressures from 4 to 14, and crossover
probabilities of 0.4 to 0.75. Probability of mutation was 0.03. Eight bits per parameter leads to too much quantization
noise to find the global minimum, but it consistently finds the global basin of attraction. Taking the result of the eight
bits per parameter GA and using it as the starting point in a gradient descent algorithm is a relatively economical way of
obtaining the global optimum.

6. CONCLUSIONS

In practice, it is not a good idea to combine signals collected at different excitation frequencies or signals with the tone
burst overlapping, as done above to test the robustness of the algorithm. In the interest of reliability the full robustness of
the algorithm should not be pressed to its limits; it is the same principle as not always driving a car at 120 mph just
because it is occasionally possible to go that fast. The EMATSs should be arranged such that the tone burst does not
overlap the signature being classified.

The tone burst can be removed with Bayesian parameter estimation, but it is unfeasible to do so in real time. Using a
compiled Mathematica implementation of the Bayesian algorithm on a 1.2 GHz Pentium IV processor, the evaluation of
the fitness function in the global optimization required 6 ms per function call. A highly efficient C++ implementation
might improve the speed to perhaps 0.5 ms per call. If the average optimization requires 40,000 calls to converge, it
requires 20 seconds for the Bayesian algorithm to produce a result. This is about three orders of magnitude too slow for
real time.

Also in practice, the algorithm should use different calibration data for each combination of pipe diameter, excitation
frequency and sensor geometry. The calibration data set should be derived from at least 25 “no flaw” signatures, without
the tone burst overlapping, for each combination. The 17-dimension feature vector is calculated for each sample. The
calibration data is the statistical properties, specifically the 17-dimension mean vector (or cluster center) and the 17x17
inverted covariance matrix, of the “no flaw” cluster.

The decision of whether or not a given signature is a “flaw” or “no flaw” signature is based on the Mahalanobis distance
of the 17-dimension feature vector of the signature from the “no flaw” cluster center. Thus, the other necessary
calibration datum is the Mahalanobis distance from the cluster that is considered to be the decision boundary. This must
be determined by computing the Mahalanobis distances from the “no flaw” cluster center for a large number of samples,
at least 25 each for “flaw” and “no flaw” signatures, and placing the boundary between them.

The “no flaw” signatures tend to form a tight cluster. The “flaw” signatures tend to form a loose and wildly varying
cluster; it tends to exaggerate the effect of noise. Thus, the Mahalanobis distance from the “flaw” cluster does not
reliably separate “flaw” from “no-flaw” signatures and cannot be used as a reliable classifier. No computational energy
need be wasted computing it.

The advantage of this 17-dimension algorithm is that it is feasible to apply it inexpensively in real time. Using a similar
algorithm in another project, implementing it as a highly efficient C program on an 800-MHz Pentium III, computation
of a wavelet-based feature vector and its Mahalanobis distance from a cluster center required approximately 4
milliseconds. With a 2.8-GHz Pentium IV, and the improved efficiency of the C++ complier in Microsoft Visual Studio,
it should be feasible to implement a version of the 17-dimension classifier that makes the classification decision for a
given signature in 2 ms or less. Real-time implementation of this algorithm does not require a dedicated DSP chip.



However, it may be useful to use a control computer with a multiprocessor mother board where one Pentium IV is
dedicated to this process. Windows 2000 and XP support multi-processor programming.

This research has found a single feature space in which flaws can be readily distinguished from no-flaw signatures.
Although it is feasible to use different techniques to extract multiple features vectors as described above to identify
different flaw types, having a single classifier lightens the computational load. It is feasible to classify each trial in real-
time, and record only those signatures that are classified as flaws.

Ideally, classification by flaw type will also be performed in real-time by the inspection system on board the pig that
serves as a platform for the EMATSs. Different flaw types induce conversions of transmitted ultrasonic wave modes in
predictable ways. The idealized time domain signature of a given mode is known. Once the presence of the flaw is
determined by wavelet analysis, cross correlation can be performed between the idealized exemplar and the measured
signal. This calculation should be easily realized in real time using Fourier-based cross correlation, and provide reliable
classification by flaw type. There is also a possibility that this analysis will yield specific flaw parameters such as depth
of crack, but that would be much more difficult than merely classifying by type.
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