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Objectives
♦ Determine basic ferromagnetic properties of Ni-based alloys for substrates
♦ Establish level of FM (hysteretic) loss W, for potential ac applications
♦ Examine effect of bending deformation; ac frequency; dc bias field on loss

Materials
♦ Biaxially textured Ni1-xWx alloys with x = 0, 3, 5, and 9 at %.
♦ Materials from AmSC, Oxford, ORNL

A Work supported by AFOSR under grant F49620-02-1-0182
B Research sponsored by USDOE, Office of EERE, under contract DE-AC05-00OR22725
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Analogies between Superconductors and Ferromagnets

Superconductor

Transition temperature Tc

Condensation energy,
Thermodynamic critical field
...

Vortex pinning
Critical current density

Ferromagnet

Curie temperature Tc

Condensation energy,
Spontaneous magnetization
…

Domain wall pinning
Coercive field, coercivity

Intrinsic properties

Extrinsic properties

Studies were conducted in a SQUID magnetometer, with dc and ac fields
applied  || plane of Ni-W foil samples, to minimize demagnetizing effects.



Determination of Msat and Curie Tc : M ∝ (Tc – T)1/3
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NiW SummaryandTables

textured Ni - W alloys
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Tc = 335 K

Ni - 5 at% W
near Curie Tc,

Msat ~ (Tc-T) β=1/3
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For Ni, magnetocrystalline anisotropy gives [111] easy axis;
Biaxial texturing and sample geometry has field H || [100]
⇒  rounding of magnetization curves M(H).



Dependence of Curie Tc and Msat on Cr-content x

-  Our previous work - Ni-Cr
(Physica C 370, 169 (2002)

-  Ferromagnetism, R. P.
Bozorth (IEEE Press, 1978)

-  Besnus, Gottehrer, and
Munshy, Phys. Stat. Sol. B
49, 597 (1972).
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- Our previous work - Ni-Cr
(Physica C 370, 169 (2002)

-  Ferromagnetism, R. P.
Bozorth (IEEE Press, 1978)

-  Besnus, Gottehrer, and
Munshy, Phys. Stat. Sol. B
49, 597 (1972).

- Present work on Ni-W

Dependence of Curie Tc and Msat on W-content x

➨



-600 -400 -200 0 200 400 600
-50

-40

-30

-20

-10

0

10

20

30

40

50
electroplated Ni (lossy)
T = 120 K

 

 

M
 (

G
-c

m
3 /g

m
)

H (Oe)

Obtain FM loss from M(H) loop area

FM loss W = �MdH = loop area, which increases with Hmax 



FM loss W vs Hmax at 50, 77 K, with bending deformation 
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♦  Loss W first increases ~ linearly with Hmax, then saturates;
♦  loss increases with # cycles of deformation (0.4% bending strain);
♦  loss increases somewhat as T decreases.



FM loss W vs damage due to # of bending deformations
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NiW SummaryandTables

textured Ni - W alloys
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T = 77 K, Hmax = 400 Oe

 Ni5W, AmSC
 Ni3W, ORNL
 Ni3W, Oxford
 Ni7Cr, ORNL

one half-deformation:  ⇒ � ⇒  ; second half-deformation  ⇒ � ⇒ 



♦  HTSC and FM power losses scale
very differently with current I0/Ic

♦  HTSC loss can be reduced (ideally)
by factor of 1/N by subdividing tape
into N (non-interacting) conductors.

Loss in HTSC (8 mm × 2.5 µm):
for Jc = 1×106 A/cm2, Ic = 200 A

If I0 = Ic, Norris gives ac loss/m of
Lc, max = (µ0 /2π) Ic

2  = 8 mJ/m-cycle
     ⇔ power = 2400 mW/(kA-m)

For I0 = Ic/2 = 100 A,
 Lc ≈ (1/17) Lc, max = 0.46 mJ/m-cycle
     ⇔ power loss = 270 mW/(kA-m)
===========================
Substrate Loss (8 mm × 50 µm):
 0.4 cm3 of alloy/m × 0.27 mJ/cm3  ⇒

Lc, FM = 0.10 mJ/m-cycle (Ni-5%W)
        (and 0.7mJ/m-cycle for pure Ni)
     ⇔ power loss = 64 mW/(kA-m)
        (and 430 mW/kA-m for pure Ni)

Illustration: relative losses for YBCO / Ni-5 W
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ac loss W decreases when dc bias field saturates Ni-alloy



ac loss is independent of ac f  to 100’s of Hz 
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Eddy current losses minimal; skin depth δ≈(2ρ/µω)1/2 ≈ 1.4 mm
for ρ = 10µΩ−cm, ω = 1000 rad/s, µ/µ0 ≈ 40.

Also, loss W was ~ unaffected by temperature cycling;
8 cycles of 300 - 77 K increased W from 295 ⇒ 302 erg/g (for
undeformed Ni-5 at.% W at 77 K, with Hmax = 400 Oe)



Other Ni alloys have minimal/no FM & biaxial texture 

Magnetization M is much smaller than for more concentrated alloys.

For these Ni-based alloys, the FM vanishes at temperatures of potential
applications.
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Conclusions

◆ Ni1-xWx alloys with x = 0, 3, 5, and 9 at % W:  Msat (and ~Tc)
decrease linearly with x; critical concentration xc ≈ 9.5 at. % W.

◆ FM hysteretic loss W ~ 300-600 erg/g-cycle in biaxially
textured alloys with tungsten contents of 5-3 at. %

◆ Loss W increases at first ~ linearly with field excursion Hmax,
then saturates at larger Hmax

◆ Loss W increases with bending deformation (0.4 % bend strain)
⇔ pinning of domain walls by induced defects.

◆ FM loss independent of ac frequency; stable with T-cycles;
decreases drastically when alloy is saturated by dc bias field.




