
 
Adaptive Range Identification for  

Exponential Visual Servo Tracking* 
 

W. E. Dixon,1 Y. Fang,2 D. M. Dawson,2 and J. Chen2 

 
1Engineering Science and Technology Division, Robotics and Energetic Machines Group, 

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6305 
 

2Department of Electrical & Computer Engineering, Clemson University, Clemson, SC 29634-0915 
 
 
 

E-mail:  dixonwe@ornl.gov, Telephone:  (865) 574-9025 
 
 

Keywords: Homography, Range Identification, Visual Servo Control 
 
 
 
 

"The submitted manuscript has been authored 
by a contractor of the U.S. Government  
under  contract  No.          DE-AC05-
96OR22464.  Accordingly, the U.S. 
Government  retains  a  nonexclusive, royalty-
free license to publish or   reproduce the 
published form of this contribution, or allow 
others to do so,      for U.S. Government 
purposes." 

 
 
 
 
 
 
 
 

 
To appear at the IEEE International Symposium on Intelligent Control,  

Oct. 5 - 8, 2003, Houston, TX 

                                                 
* This research was supported in part by the U.S. Department of Energy (DOE) Office of 
Biological and Environmental Research (OBER) Environmental Management Sciences Program 
(EMSP) project ID No. 82797 at Oak Ridge National Laboratory (ORNL), managed by UT-
Battelle, LLC, for the DOE under contract DE-AC05-00OR22725, and in part by a University of 
Florida subcontract to ORNL by the Florida Department of Citrus, and by U.S. NSF Grant DMI-
9457967, ONR Grant N00014-99-1-0589, a DOC Grant, and an ARO Automotive Center Grant. 



Adaptive Range Identification for Exponential Visual Servo Tracking∗

W. E. Dixon†, Y. Fang‡, D. M. Dawson‡, and J. Chen‡
†Eng. Science and Tech. Div. - Robotics, Oak Ridge Nat. Lab., P.O. Box 2008, Oak Ridge, TN 37831-6305

‡Department of Electrical & Computer Engineering, Clemson University, Clemson, SC 29634-0915

E-mail: dixonwe@ornl.gov; ddawson, yfang, jianc@ces.clemson.edu

Abstract: A projective homography is developed by
relating feature points extracted from images taken at the
reference and current camera position/orientation. By
decomposing the homography into translation and rota-
tion components, geometric relationships are determined
that facilitate the construction of an adaptive strategy
to identify unknown depth information. The develop-
ment of the parameter identification strategy provides
a mechanism to develop a position-based and a hybrid
position/image-based visual servo controller for a trajec-
tory tracking control problem. By using information ob-
tained from the parameter identification strategy, both
visual servoing controllers are proven to yield exponen-
tial tracking.

1 Introduction

A significant issue that has impacted the development
and application of visual servo control algorithms is the
fact that the image-space is a 2-dimensional (2D) projec-
tion of the 3D task-space. To compensate for the lack of
depth information from the 2D image data, researchers
have explored the use of additional sensors (e.g., laser
and sound ranging technologies) and the use of additional
cameras in a stereo configuration that triangulate on cor-
responding images. However, the practical drawbacks of
incorporating additional sensors include: increased cost,
increased complexity, decreased reliability, and increased
processing burden to condition and fuse sensor data. Mo-
tivated by these practical insights, recent research has fo-
cused on monocular visual servo strategies that do not
require additional depth sensors. To achieve this ob-
jective, partitioned approaches that exploit a combina-
tion of reconstructed 3D task-space information and 2D
image-space information have been proposed. For exam-
ple, in the series of papers by Malis and Chaumette (e.g.,
[1, 2, 12, 13, 14]) various kinematic control strategies
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(coined 2.5D visual servo control) exploit the fact that
the interaction between translation and rotation compo-
nents can be decoupled through a homography. Informa-
tion combined from the task-space (obtained through a
projective Euclidean reconstruction from the image data)
and the 2D image-space is utilized to regulate the trans-
lation and rotation error systems. In [6], Deguchi utilizes
a homography relationship and an epipolar condition to
decouple the rotation and translation components and
then illustrates how two types of visual controllers can
be developed from the decoupled information. Corke and
Hutchinson [5] also developed a hybrid image-based visual
servoing scheme that decouples rotation and translation
components from the remaining degrees of freedom. One
drawback of the aforementioned controllers are that each
result claims (without a supporting proof) that a con-
stant, best-guess estimate of the depth information can
be utilized in lieu of the exact value. Motivated by the
desire to actively compensate for unmeasurable depth in-
formation, [3] developed an adaptive kinematic controller
to ensure uniformly ultimately bounded (UUB) set-point
regulation, provided conditions on the translational ve-
locity and the bounds on uncertain depth parameters are
satisfied. In [4], Conticelli et al. proposed a 3D depth
estimation procedure that exploits a prediction error pro-
vided a positive definite condition on the interaction ma-
trix is satisfied. In [7] and [8], Fang et al. recently de-
veloped 2.5D visual servo controllers to asymptotically
regulate a manipulator end-effector and a mobile robot,
respectively, by developing an adaptive update law that
actively compensates for an unknown depth parameter.

As in [1, 2, 7, 8, 12, 13, 14], the results of this paper
are based on exploiting a homography relationship be-
tween feature points extracted from images taken by a
camera at the reference and current position/orientation.
By decomposing the homography into translation and
rotation components, geometric relationships are deter-
mined that facilitate the construction of an adaptive pa-
rameter identification strategy. The development of the
parameter identification strategy provides a mechanism
to develop visual servo controllers for a newly formu-
lated tracking control problem (all of the aforementioned
research has targeted regulating the camera to a fixed
position/orientation). Specifically, the tracking control
problem is defined as follows: given some reference posi-
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tion/orientation of the camera (defined by a reference im-
age), the objective is to track a desired time-varying posi-
tion/orientation trajectory that is defined in terms of the
reference image. Based on this formulation of the tracking
problem, exponential tracking controllers are developed
based on the results of the parameter identification strat-
egy. The first tracking controller is developed based on a
position-based visual servo (PBVS) control strategy (i.e.,
the controller only depends on reconstructed task-space
information). Motivated by the reported disadvantages
of PBVS controllers (see [10, 15] for an in-depth discus-
sion), a 2.5D visual servoing strategy (i.e., the hybrid
controller depends on a combination of image-space and
reconstructed task-space information) is also developed
that yields exponential tracking control.

2 Projective Geometry
In this section, geometric relationships are developed be-
tween a moving coordinate system (denoted by F) at-
tached to a camera held by the end-effector of a robot
manipulator, a desired moving coordinate system (de-
noted by Fd), a fixed coordinate system (denoted by F∗)
that represents a reference position/orientation, and a
reference plane π that is defined by four target points
Oi ∀i = 1, 2, 3, 4. Each target point will have a pro-
jected pixel coordinate expressed in terms of F (denoted
by ui (t), vi (t) ∈ R), Fd (denoted by udi (t), vdi (t) ∈ R),
and F∗ (denoted by u∗i , v∗i ∈ R) that are defined as ele-
ments of pi (t) (actual time-varying image points), pdi (t)
(desired image point trajectory), and p∗i (constant refer-
ence image points), respectively, as follows

pi ,
£
ui vi 1

¤T
pdi ,

£
udi vdi 1

¤T
p∗i ,

£
u∗i v∗i 1

¤T
.

(1)

The projected 2D pixel coordinates of the target
points introduced in (1) can be related to the 3D
task-space coordinates of Oi, denoted by m̄i(t) ,£
Xi(t) Yi(t) Zi(t)

¤T ∈ R3 in F , m̄di(t) ,£
Xdi(t) Ydi(t) Zdi(t)

¤T ∈ R3 in Fd, and m̄∗i ,£
X∗i Y ∗i Z∗i

¤T ∈ R3 in F∗, by the following trans-
formations

pi = Ami pdi = Amdi p∗i = Am
∗
i (2)

where A ∈ R3×3 is a known, constant, and invertible
intrinsic camera calibration matrix and mi (t), mdi (t),
m∗i ∈ R3, denote the following normalized 3D task-space
coordinates of Oi expressed in terms of F , Fd, and F∗,
respectively

mi ,
m̄i

Zi
mdi ,

m̄di

Zdi
m∗i ,

m̄∗i
Z∗i

(3)

where the standard assumption is made that Zi (t),
Zdi (t), and Z∗i are positive. The desired 3D task-space

coordinates m̄di(t) are assumed to be first order differen-
tiable.
A projective homography, denoted by G (t) ∈ R3×3,

can be utilized to relate the image points pi (t) and p∗i of
(1) in the following manner [9]

p∗i = αiGpi (4)

where αi (t) ∈ R is an unknown scaling ratio defined as
follows

αi ,
Zi
Z∗i

(5)

where Zi (t) and Z∗i were introduced in (3). From (2) and
(4), the following relationship can be developed

m∗i = αiHmi (6)

where H (t) ∈ R3×3 denotes the Euclidean homography
that is defined as follows

H , A−1GA . (7)

The Euclidean homography can be computed using (7)
where G(t) is determined by utilizing (4) to solve a linear
system of equations using 4 pairs of points (p∗i , pi (t)) on
the reference plane π (see [7] for further details). By
utilizing various techniques (e.g., see [9, 17]), H(t) can be
decomposed as follows

H = R+ xhn
T (8)

where R (t) ∈ SO(3) denotes a rotation matrix from F
to F∗, n(t) ∈ R3 denotes the unit normal from F to π,
and xh (t) ∈ R3 denotes a scaled translation vector from
F∗ to F that is expressed in F∗. That is, R (t), n(t),
and xh (t) can be computed from H(t). The translation
from F∗ to F , denoted by xf (t) ∈ R3 (expressed in F∗)
is unmeasurable; however, it can be expressed in terms of
the computed translation vector xh (t) as follows

xf = xhd (9)

where d(t) ∈ R denotes the positive unknown distance
from F to π along n (see Figure 1). The translation from
F∗ to Fd is denoted by xfd(t) ∈ R3 (expressed in F∗)
and is assumed to be first order differentiable (see Figure
1). In Figure 1, d∗(t) ∈ R denotes the unknown, con-
stant distance from F∗ to π along n∗(t) ∈ R3 where n∗(t)
denotes the unit normal from F∗ to π with coordinates
expressed in F∗.
From the expression given in (9), xf (t) is unmeasurable

due to the dependence on the unmeasurable time-varying
depth parameter d(t). As a means to compensate for
the lack of depth measurements, (9) can be rewritten as
follows

xf = x̄hd
∗ (10)

where the scaled translation signal x̄h(t) ∈ R3 is defined
as

x̄h ,
xh
γ1

. (11)
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In (11), the positive1 scaling signal γ1 (t) ∈ R is defined
as follows

γ1 ,
d∗

d
. (12)

Geometric relationships between F , F∗, and π depicted in
Figure 1 can be used to develop the following relationship

d∗ = d+ n∗Txf . (13)

By dividing (13) by d(t), the following measurable expres-
sion for γ1 (t) can be obtained

γ1 = 1 + n
TRTxh (14)

where the fact that n∗ = R(t)n(t) has been used and n(t),
R(t), and xh(t) are computed from (8).

π

n *

F

R

Oi

d*

n

d

x f

F*

mi(X,Y,Z)

m*i(X*,Y*,Z*)

Fd

x fd

mi (Xd,Yd,Zd)

π

n *n *

F

R

OiOi

d*d*

n

d

x fx f

F*

mi(X,Y,Z)mi(X,Y,Z)

m*i(X*,Y*,Z*)m*i(X*,Y*,Z*)

Fd

x fdx fd

mi (Xd,Yd,Zd)mi (Xd,Yd,Zd)

Figure 1: Coordinate frame relationships.

Remark 1 A similar homography relationship as in (6)
can be developed as follows

m∗i = αdiHdmdi (15)

where αdi , Zdi/Z
∗
i and Hd (t) ∈ R3×3 denotes the de-

sired Euclidean homography that can be decomposed as
follows

Hd = Rd + xhdn
T
d (16)

where Rd (t) ∈ SO(3) denotes a rotation matrix from Fd
to F∗, nd(t) ∈ R3 denotes the unit normal from Fd to π,
and xhd (t) ∈ R3 denotes a scaled translation vector from
F∗ to Fd that is expressed in F∗.

3 Control Objective

The objective is to develop a visual servo controller that
ensures F tracks Fd, where Fd is moving according to a
desired time-varying trajectory that is constructed rela-
tive to the reference camera position/orientation given by

1The degenerate case when d(t) = 0 is assumed to always be
avoided.

F∗. To quantify this objective, a rotation tracking error,
denoted by ẽω(t) ∈ R3, is defined as follows

ẽω , eω − eωd . (17)

In (17), eω(t) ∈ R3 denotes the rotation mismatch be-
tween F and F∗ with respect to F and eωd(t) ∈ R3 de-
notes the rotation mismatch between Fd and F∗ with
respect to Fd, as follows

eω , uθ eωd , udθd (18)

where u (t), ud (t) ∈ R3 represent unit rotation axes, and
θ (t) , θd (t) ∈ R denote the respective rotations about u(t)
and ud (t) that are assumed to be confined to the following
regions

−π < θ (t) < π − π < θd (t) < π . (19)

The desired rotation mismatch eωd(t) is assumed to be
first order differentiable. The parameterization u (t) θ (t)
is related to the rotation matrix R (t) (computed from the
homography as described in (8)) by the following expres-
sion

R = I3 + sin θ [u]× + 2 sin
2 θ

2
[u]2× (20)

where the notation Ii denotes an i×i identity matrix, and
the notation [ζ]× denotes the following skew-symmetric
cross-product matrix. For details regarding the compu-
tation of u (t) and θ (t) (or ud (t) and θd (t)) from a given
rotation matrix R (t) (or Rd(t)), see [7].
From a geometric perspective, the position tracking

control objective is to force xf (t) of (9) (see Figure 1) to
track the desired time-varying trajectory xfd(t) depicted
in Figure 1. To quantify this objective, a position track-
ing error, denoted by x̃f (t) ∈ R3, is defined as follows

x̃f = xf − xfd. (21)

Based on the expressions given in (10), (11), and (14), a
measureable relationship for xf (t) (and hence, x̃f (t)) can
be obtained if the unknown constant parameter d∗ can
be computed. Motivated by the desire to determine d∗,
an adaptive calibration routine is developed in the subse-
quent section and the results of the calibration routine are
used to develop several visual servo tracking controllers.
To quantify the identification of d∗, the parameter esti-
mate error signal d̃∗(t) ∈ R is defined as follows

d̃∗ , d∗ − d̂∗ (22)

where d̂∗(t) ∈ R denotes a subsequently designed estimate
for d∗. To facilitate the development of the adaptive pa-
rameter estimation routine, an auxiliary position tracking
error, denoted by x̃h(t) ∈ R3, is defined as the difference
between the measurable translation x̄h(t) defined in (11)
and a desired translation x̄hd(t) ∈ R3 as follows

x̃h , x̄h − x̄hd . (23)
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4 Adaptive Parameter Identifica-
tion

4.1 Open-Loop Error System

From Figure 1, the following relationship can be deter-
mined

ẋf = Rvc (24)

where vc(t) ∈ R3 denotes the linear velocity of the camera
expressed in F andR(t) was introduced in (8). To develop
the open-loop error system for x̃h(t), we take the time
derivative of (23) and multiply the resulting expression
by d∗ to obtain the following expression

d∗
.
x̃h = Rvc − d∗

.
x̄hd (25)

where (24) and the time derivative of (10) have been uti-
lized. By selecting the desired trajectory x̄hd(t) as follows
(for the identification scheme only)

x̄hd ,
£
cos(t) 0 0

¤T
the open loop error dynamics given in (25) can be rewrit-
ten as

d∗
.
x̃h = Rvc − d∗

£ − sin(t) 0 0
¤T
. (26)

The open-loop error dynamics for eω(t) can be ex-
pressed as follows [11, 14]

ėω = −Lωωc (27)

where ωc(t) ∈ R3 denotes the angular velocity of the cam-
era expressed in F , and Lω (t) ∈ R3×3 is a measurable
matrix defined as follows

Lω , I3 +
θ

2
[u]× +

1− sinc (θ)

sinc2
µ
θ

2

¶
 [u]2× (28)

where

sinc (θ (t)) , sin θ (t)

θ (t)
.

Remark 2 By exploiting the fact that u(t) is a unit vec-
tor (i.e., kuk2 = 1), the determinant of Lω (t) can be
derived as follows [12]

detLω =
1

sinc2
µ
θ

2

¶ , (29)

and it is thus singular only for multiples of 2π (i.e., out
of the assumed workspace).

4.2 Closed-Loop Error System

Based on the structure of the open-loop error systems
and subsequent stability analysis, the angular and linear
camera velocity control inputs for the range identification
problem are defined as follows

ωc , kωeω (30)

vc , RT
³
−kvx̃h + d̂∗

£ − sin(t) 0 0
¤T´

(31)

where the measureable signals eω(t) and x̃h(t) are defined
in (18) and (23), respectively. In (30) and (31), kv, kω ∈
R denote positive control gains, and d̂∗(t) ∈ R denotes
the parameter estimate for d∗ that is generated by the
following differential equation

.

d̂∗ = −Γ £ − sin(t) 0 0
¤
x̃h (32)

where Γ ∈ R denotes a positive constant adaptation gain.
After substituting (30) into (27) for ωc(t) the following
closed-loop orientation error system is obtained

ėω = −kωLωeω . (33)

After substituting (31) into (26) for vc(t) the following
closed-loop translation error system is obtained

d∗
.
x̃h = −kvx̃h − d̃∗

£ − sin(t) 0 0
¤T
. (34)

4.3 Analysis

Theorem 1 The adaptive update law defined in (32)
along with the control inputs designed in (30) and (31)
ensure that the auxiliary error signals eω (t) and x̃h (t)
are asymptotically driven to zero and that the constant
unknown parameter d∗ is identified in the sense that

lim
t→∞ keω(t)k , kx̃h(t)k , d̃ (t) = 0 . (35)

Proof: To prove Theorem 1, we define the following
non-negative function

V , 1

2
eTωeω +

d∗

2
x̃Th x̃h +

1

2Γ
d̃∗2 . (36)

After taking the time derivative of (36) and then substi-
tuting for the closed-loop error systems developed in (33)
and (34), the following expression is obtained

V̇ = −kωeTωLωeω + d̃∗
£ − sin(t) 0 0

¤
x̃h (37)

+x̃Th

³
−kvx̃h − d̃∗

£ − sin(t) 0 0
¤T´

.

By cancelling common terms and utilizing the fact that

eTωLωeω = e
T
ωeω, (38)

the following expression is obtained

V̇ = −kωeTωeω − kvx̃Th x̃h . (39)
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Based on (36) and (39), it can be determined that eω(t),
x̃h(t), d̃∗(t), d̂∗(t) ∈ L∞ and that eω(t), x̃h(t) ∈ L2. The
expression given in (30) can be used to conclude that
ωc(t) ∈ L∞. From (31) - (34), we can now show that
.

d̂(t), vc(t),
.
x̃h(t), ėω(t) ∈ L∞. Since eω(t), x̃h(t) ∈ L2

and eω(t), ėω(t), x̃h(t),
.
x̃h(t) ∈ L∞, Barbalat’s Lemma

[16] can be used to prove that

lim
t→∞ keω(t)k , kx̃h(t)k = 0 . (40)

The time derivative of (34) can be determined as follows

d∗
..
x̃h = −kv

.
x̃h − d̃∗

£ − cos(t) 0 0
¤T

(41)

−
.

d̃∗
£ − sin(t) 0 0

¤T
.

From (41) and the previous development,
..
x̃h(t) ∈ L∞;

hence,
.
x̃h(t) is uniformly continuous (UC). Since

.
x̃h(t) is

UC, (40) and the integral form of Barbalat’s Lemma [16]
can be used to prove that

lim
t→∞

°°° .x̃h(t)°°° = 0 . (42)

From (34) and the fact that

lim
t→∞ kx̃h(t)k ,

°°° .x̃h(t)°°° = 0,
it is clear that

lim
t→∞ sin(t)d̃

∗(t) = 0 . (43)

The result given in (43) can be used to prove that the
parameter estimate d̂∗(t) can be used to identify the un-
known constant parameter d∗ in the sense that

lim
t→∞ d̃

∗ = 0 . ¤

5 Visual Servo Control
Any point Oi on π can be utilized in the subsequent de-
velopment; however, to reduce the notational complexity,
we have elected to select the image point O1, and hence,
the subscript 1 is utilized in lieu of i. Based on the re-
sults from Theorem 1, the constant parameter d∗ can be
actively identified by using the adaptive update law in
(32) along with the control inputs designed in (30) and
(31). Once d∗ has been identified using this procedure,
the relationships given in (8), (10), (11), and (14) can
be used to compute xf (t). Moreover, by identifying d∗

the unknown time-varying Euclidean depth information
Z1(t) introduced in (2) can be determined. To this end,
the auxiliary signal γ2(t) ∈ R is defined as follows

γ2 ,
Z1
d∗
. (44)

Based on the fact that d(t) is equal to the projection of
m̄1(t) along n(t) as follows (see Figure 1)

d = nT m̄1, (45)

(3) and (12) can be used to rewrite (44) in the following
measurable form

γ2 =
1

nTm1γ1
hence, Z1 =

d∗

nTm1γ1
(46)

where the measureable form of γ1(t) is given in (14).
These facts will be utilized in the development of the sub-
sequent controllers.

5.1 PBVS Tracking Controller

After taking the time derivative of (21) the following ex-
pression is obtained

.
x̃f = Rvc − ẋfd (47)

where (24) was utilized, and ẋfd(t) denotes the time
derivative of xfd(t) introduced in (21). The open-loop
tracking error dynamics for ẽω(t) are determined by tak-
ing the time derivative of (17) as follows

.
ẽω = −Lωωc − ėωd (48)

where (27) was utilized, and ėωd(t) denotes the time
derivative of the desired mismatch introduced in (17).
From (47) and (48), the linear and angular velocity con-
trol inputs for the camera are designed as follows

vc , RT (ẋfd − kvx̃f ) ωc , L−1ω (−ėωd + kω ẽω) .
(49)

After substituting (49) into (47) and (48) and then solv-
ing the resulting differential equations, the transient and
steady state response of the position/orientation track-
ing errors can be proven to be confined to the following
exponentially decaying envelopes

x̃f (t) = x̃f (0) exp(−kvt) ẽω(t) = ẽω(0) exp(−kωt) .
(50)

Standard signal chasing arguments can now be used to
prove that signals are bounded under closed-loop opera-
tion.

5.2 2.5D Tracking Control

To develop a 2.5D visual servo controller, a new hybrid
position tracking error, denoted by ev(t) ∈ R3, is defined
as follows

ev , me −med (51)

where me (t) =
£
me1 (t) me2 (t) me3 (t)

¤T ∈ R3 de-
notes the coordinates of an image point on π extended by
the Euclidean depth coordinate as follows

me ,
·
X1
Z1

Y1
Z1

Z1

¸T
(52)

and med(t) =
£
med1(t) med2(t) med3(t)

¤T ∈ R3 de-
notes the extended image coordinates of the correspond-
ing desired image point as follows

med ,
·
Xd1
Zd1

Yd1
Zd1

Zd1

¸T
(53)
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where Xd1(t), Yd1(t), and Zd1(t) denote the time-varying
coordinates introduced in (2).
After taking the time derivative of (51), the following

expression can be obtained

ėv = ṁe − ṁed =
1

Z1

 1 0 −me1

0 1 −me2

0 0 me3

 .
m̄1 − ṁed (54)

where
.
m̄1(t) is given by the following expression [7]

.
m̄1 = −vc + m̄×

1 ωc . (55)

After substituting (55) into (54), the following open-loop
tracking error system can be developed

ėv =
1

Z1
Lvvc + Lvωωc − ṁed (56)

where Lv(t), Lvω(t) ∈ R3×3 are defined as follows

Lv ,

 −1 0 me1

0 −1 me2

0 0 −me3


Lvω ,

 me1me2 −1−m2
e1 me2

1 +m2
e2 −me1me2 −me1

−me2me3 me1me3 0

 .

Based on the open-loop error system in (56), the cam-
era linear velocity input is designed as follows

vc , Z1L−1v (−kvev − Lvωωc + ṁed) (57)

where Z1(t) can be computed from the expression given
in (46). After substituting (57) into (56) and then solv-
ing the resulting differential equation, the transient and
steady state response of the position tracking error intro-
duced in (51) can be proven to be confined to the following
exponentially decaying envelope

ev(t) = ev(0) exp(−kvt) . (58)

By designing ωc(t) as in (49), the rotation tracking er-
ror can be proven to be confined to the same exponen-
tially decaying envelope as in (50). Standard signal chas-
ing arguments can now be used to prove that signals are
bounded under closed-loop operation.

6 Conclusion
A projective homography is developed by exploiting the
geometric relationships between coordinate frames at-
tached to the current and a reference camera posi-
tion/orientation. The relationships are exploited to facil-
itate the construction of an adaptive strategy to identify
unknown depth information. Once the constant unknown
depth parameter is identified, geometric relationships are
exploited to determine several time-varying depth related
signals. By determining these signals, PBVS and 2.5D vi-
sual servo tracking controllers are designed. Both visual
servoing controllers are proven to yield exponential track-
ing.
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