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Abstract

Analyzing continuous flow-in data has gained significant attention lately. This new data model —
often called data streams — includes scientific simulation output, satellite images, financial data, Web
logs, network traffic data, etc. Processing data streams presents both practical and theoretical challenges;
it often requires immediate results as streams flow in, and data size easily grows too fast to handle. This
paper considers dimension reduction of a data stream. It particularly introduces a novel dimension
reduction algorithm called Xmap, which exploits the connection between FastMap and the convex hull of
data in Euclidean space. The paper shows that Xmap efficiently identifies a small representative subset
of the past data and maintains well-approximated lower dimensional map at any given time.

1 Introduction

Dimension reduction techniques begin with n objects as points in a d-dimensional vector space and map the
objects onto n points in a k-dimensional vector space, where k < d. A more general situation arises when
the point coordinates are not known and only pairwise distances (or a distance function to compute them)
are available. This mapping of objects based on their distances only into a k-dimensional vector space is
called finite metric space embedding [6].

High dimensionality of data is one source of problems that challenges data practitioners. Visualization
requires mapping the data to two or three dimensions. When the number of dimensions reaches thousands
(or, even hundreds), visualizing two or three dimensions becomes combinatorially impossible. At the same
time, many high dimensional data sets also include insignificant or irrelevant features, which often deteriorate
the performance of many data mining processes like clustering [8] and classification [12].

In numerous scientific disciplines, data is naturally generated as a stream that is often very high dimen-
sional. One good example can be found in the climate modeling community. A climate model deals with a
series of outputs that are generated over an extremely long duration of a simulation process. The outputs,
which include simulated values of numerous climate variables over a large number of grid points around the
globe, are then used to understand complex climate processes.

Reducing the dimensionality of such a data stream is intrinsically difficult. The volume of data easily
grows into almost unmanageable amount. For example, a simulation of a high-resolution ocean model
generates data at an average of 2MB/sec [2] and typically runs for months. It essentially precludes any naive
monolithic approach that regenerates the output from the ground up every time it observes new chunk of
data from the source. Therefore, reducing dimensionality from such a high volume data stream calls for
more efficient and scalable approaches.

In this paper, we propose a novel approach called Xmap that achieves dimension reduction from a stream
of high dimensional multivariate data. Based on our recent observation that outputs of the FastMap heuristic
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[5] are vertices of the convex hull around the original data [10], Xmap effectively identifies a representative
subset of a data stream, which is substantially small in size. It then dynamically updates the representative
subset as more data flow in from the stream source, and produces a projection map (or, lower dimensional
representation) at any given time.

The paper is organized as follows. In Section 2, we present some background material. In particular, the
convex hull connection to the FastMap heuristic is introduced. In section 3, Xmap is described in detail.
Some observations from empirical studies are presented in section 4. Finally, section 5 concludes the paper
with a discussion on future directions.

2 Background

This section presents some background materials of the paper. First, we define some notation that will be
used throughout the paper.

2.1 Notation

We assume that the data stream is a series of blocks S = {By, Ba, Bs, ...} (possibly endless) that are received
at different time steps t1, t2,..., etc. — B; is observed at time ¢;. S, denotes a subset of S that includes all
the data blocks presented up-to t,, i.e., S, = {B1,Bs,...,B,}.

0, is a representation of a data point in some vector space (in our case, it is some Euclidean space) and
‘H is a hyperplane in the space under consideration. d(O,,0s) and 0,0, denotes the distance and the line
between O, and Oy, respectively. A pair of points (O,, Op) is called a pivot in some special case.

C(D) denotes the convex hull of data set D in d-dimensional Euclidean space, where d stands for the
number of attributes of D. P; denotes a subset of points that are vertices of the convex hull C(&;_1 U B;),
where £;_1 = Ufc_:llPk and initially & = {}. We also use the term eztreme point to denote a point O, € P;
at some time step ;.

2.2 FastMap and Its Connection to the Convex Hull

FastMap is first introduced in [5] as a fast alternative to Multidimensional Scaling (MDS) [11] and a gen-
eralization of Principal Component Analysis (PCA) [7]. MDS is a finite metric space embedding method
and PCA is a popular dimension reduction method. The context of [5] is similarity searching in multimedia
databases. Given dimension k¥ and Euclidean distances between n objects, FastMap maps the objects onto
n points in k-dimensional Euclidean space. An implicit assumption by FastMap that the objects are points
in a d-dimensional Euclidean space (d > k) is noted in [6]. Because of this assumption, FastMap is usually
viewed as a dimension reduction method.

Given the Euclidean distance between any two points (objects) of a d-dimensional data set D, k iterations
of FastMap produce a k-dimensional (k < d) representation of D. Each iteration selects from D a pair of
points (or, pivots) that define an axis and computes coordinates of the D points along this axis. The pairwise
distances for D can then be updated to reflect a projection of D onto the subspace (a hyperplane passing
through the origin) orthogonal to this axis. The next iteration implicitly operates on the projected D in the
subspace. However, these projections are accumulated and jointly performed only for the distances that are
needed. In this manner, after k iterations, the D points end up with k coordinates giving their k-dimensional
representation.

Pivot elements are chosen by the choose-distant-objects heuristic shown in Fig. 1. Initially, ¢ = 0. After
selecting a pivot pair (O, Op,) for the i-th iteration, the i-th coordinate of each point O, € S is computed
as
_ d1271 (Oai ’ Ow) + dzzfl (Oai ) Obi) - dzzfl (Obi ’ OCE) (1)

2d;_1(Oay, On,) '

where d;(Og,0y) is the Euclidean distance between points O, and O, after their i-th projection onto a
pivot-defined hyperplane. This projection is based on the law of cosines and current distances from the two
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pivot points. The distances are updated whenever needed in Choose-distant-objects or in (1). An update for
a single iteration is presented in [5] and we extend this in [1] to a combined update

d?(Oz, Oy) = d(z)(oz’oy) - Z(xJ - yj)Q' (2)

=1

This is based on the Pythagorean theorem and the sequence of i projections onto hyperplanes perpen-
dicular to pivot axes.

After choosing a pair of vertices, FastMap projects the set D into a subspace orthogonal to the vector
defined by the pivot pair (O,,0p) and repeats the Choose-Distant-Objects heuristic in the subspace of
dimension d — 1. Pivot pairs and projections are computed until suitably many orthogonal vectors are
extracted to be used as the principal axes of the lower dimensional representation of D. It is not difficult to
show that a pivot pair is a pair of convex hull vertices within its current working subspace. Are they all also
vertices of convex hull C(D) in the original space? The answer is yes, subject to a uniqueness caveat requiring
that no pair of points (except the current pivot points) get projected onto the same point. Assuming that
the points D are in sufficiently general position [13] takes care of this. Because we have a finite set of points,
we can perturb them by an arbitrarily small amount to achieve such a general position. This observation
leads us to the following lemma [10].

Lemma 1 All FastMap pivot pairs of o data set D are a subset of the vertices of C(D), the convexr hull of
the data.

3 Extreme Points Driven Reduced Map

This section describes the proposed eXtreme points driven reduced Map (Xmap). Given a new data block
B; from a data stream S, Xmap computes and updates the projection map for S; (i.e., the entire data
observed by t;). Internally, Xmap adopts the heuristic of FastMap when it chooses a set of pivots from data;
it selects a pair of points that are possibly farthest apart. Then, how do we ensure that Xmap successfully
finds pivots of S;, when it is observing B; only? Xmap finds its solution from the connection between pivot
sets and the convex hull that is introduced in the previous section.

3.1 Expanding Boundary of a Data Stream

The FastMap heuristic sifts out & pairs of extreme points from a d-dimensional data D, where k < d. Since
these extreme points are vertices of the convex hull C(D) (see Section 2.2), they can be considered as an
approximate boundary of D. The intuition behind Xmap is to expand the boundary of a data stream S as
it receives a new block B;. Since the FastMap heuristic always seeks for pairs of points that are farthest
apart, the well-preserved boundary will most likely produce a well-approximated set of pivots.

Xmap dynamically expands the boundary of a data stream S as a new block B; is presented at time ¢;.
The boundary that Xmap maintains is a set of extreme points denoted as &;, where i stands for the time
step. Xmap starts by producing the first pivot set P; from B; and puts it into &1, i.e., & = P;. Then the

Choose-distant-objects ( D,d;(,) )
1. Choose an arbitrary object from D, and call it Oy, ,

2. Set O,,,, = the farthest object from Oy, , according to d;(,)

i1

w

. Set Oy,,, = the farthest object from O, , according to d;(,)

N

. Report Oy, and Oy, as the distant objects.

Figure 1: Choose-distant-objects heuristic for iteration .



Figure 2: The situation when (O, Oy4) is detected as the farthest pair with a choice of O, as a seed, although
(04, Op) is farthest apart.

next pivot set P, is extracted from & U By and &, is produced by adding P, to £. Subsequently, & is
appended to B;;1 and, again, P;;1 is extracted and &£;41 is produced by adding P;y1 to &. From P;, the
approximated reduced map (a set of k orthogonal projection vectors) of S; is obtained.

To ensure that the extreme point set & evolves to expand the boundary properly, Xmap uses &;_1 as seeds
to extract P; given B;. When choosing a pivot at each iteration, a poor selection can be made depending
on a seed point (See step 1 of Figure 1). This instability of the FastMap heuristic can result in failing to
properly expand the boundary. For example, let us assume that a point O, € P;_; and Oy € B; are farthest
apart in some dimension under consideration. For (O,,0;) to be chosen as a pivot, either O, or Oy should
be farthest apart from the initial seed point O;. However, since O, is chosen at random, neither O, nor O,
may be the farthest point from O,. This situation is illustrated in Figure 2. Xmap remedies this problem
by driving &;_1 to be chosen as seeds in addition to a random seed from B;.

Xmap(S)
begin
& = {}
for each data block B; € {Bi, By, ...} from §
1. apply FastMap heuristic to B; U &;—1 with &_; as additional seeds
2. produce P; as the reduced projection map at ¢;
3. & =&-1UP;.
end
end

Figure 3: Xmap

3.2 Including Missing Exterior Points Using Hyperplane

Although P; is a subset of vertices of the convex hull of B; U&; 1, it may potentially exclude many extreme
points (or, other vertices of the convex hull) due to its limited coverage. This section describes an approach
that helps to identify such missing extreme points.

Given the (¢ +1)-th pivot points Of;,,, and Oé’i +1)» let us consider how the (i + 1)-th projection vector is
obtained from the i-th projection vector. For the sake of simplicity, we assume that both O?Z. +1) and Oé’i +1)
are already mapped to the first i — 1 projection vectors in a proper way. As depicted in Figure 4, the (¢ + 1)-
th projection vector is chosen by moving O‘(lz. 41y tO sz. +1) along a direction parallel to the i-th projection



i-th projection vector

(o)

i+1

(i+1)-th projection vector

Figure 4: The (i + 1)-th projection vector is obtained by translating Of,, to 0! .1 along a direction that is
parallel to the i-th projection vector.

vector. Note that Ogi+1)0€i+1)

the (i + 1)-th projection vector. However, it is straightforward to translate O& +1) and Oé’i +1) along the i-th

may not intersect O&.)Oé’i) when Of,, ;) and Oé’i +1y are translated to lie in

or (i + 1)-th projection vectors so that they intersect ng.)Oé’i). Let us denote O?;—l) and Oé’: +1) are such

translated points of O 4 and Of;41y (In this regard, Of;) and O, are in fact Og;) and OE’;, respectively).
Now let us consider the following lemma.

Lemma 2 Consider a set of k pairs P = {(OE’I),O?I)), (OE’;),OZ)), ey (OE’;),O%)}, where O&; and Oé’;)

are points in the i-th projection vector, and are translated from the i-th pivot points O&.) and 0?1')' Let us

further assume that each O‘(lz*) O%’;) intersects every other OE’;)O?;), where 1 < i # j < k. Consider a set of k
points F; = (Ogl),OgZ), . -,Ofk)), where each OF; is either OE’;) or Oz’;) of the i-th pair in P. Then {F;}
forms a convex polytope that has at most 2% facets.

Proof: If all points in P are distinct, the convex hull of this set is a k-dimensional crosspolytope [13,
page 8], which has 2% facets. Each facet is a simplex on a set of k vertices from F. If any points are not
distinct, then some facets are a face of lower dimension. Since i-th projection of any point O, € P lies in

0?5 Og‘;), each F; is essentially a system of k constraints (linearly independent if points are distinct) defining
a supporting hyperplane [13]. Therefore {F;} forms a convez polytope with at most 2F facets. B

Lemma 2 illustrates that the polytope based on P is a convex set. In other words, P itself forms a convex
boundary. Therefore points that lie outside the boundary of P are good candidates for extreme points that
are excluded in selecting P. According to Lemma 2, such points can be efficiently sifted by testing each
point against 2F hyperplanes. Given such a hyperplane H, if a point O, lies opposite halfspace that includes
P, then O, is identified as an exterior point to P. In this case O, becomes a candidate for an extreme point.
A pictorial description in 2-d space is shown in Figure 5.

4 Empirical Study

We seek to compare the performance of Xmap with that of a monolithic FastMap, i.e., the one that recom-
putes the projection map from the ground up each time a new block is presented. Since our objective is to
preserve distances in a reduced dimension, we use the following well-known stress function in the comparison.

Zoa Oy (dl(Oaa Ob) - d0(0a7 Ob))2
stress = :
\/ £0.,0,d0(0a, Op)?
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Figure 5: Exterior points detected by hyperplanes.

where do(O,, Op) is the original distance between points O, and Oy and d'(O,,Oy) is the distance between
their images in the projected k-dimensional space. We refer the reader to [4] for a review of stress functions
and their applications.

For a preliminary experiment, we use waveform and pendigits data sets from UCI repository of machine
learning databases [3]. These sets have 5,000 and 3,498 data points and have original dimensions of 21 and
16, respectively. The data sets were split into 100 pieces and presented to Xmap one piece at a time, which
essentially simulates 100 time steps. At each time step t;, the pivot set P; is used to project all the data
points presented up-to ¢;. Then, stress value is computed and recorded. For the stress value of the monolithic
FastMap, all the data blocks presented up-to ¢; are used both for producing a pivot set and computing the
stress value.

The experiment was performed for 3 different reduced dimensions, k. For each k, the experiment is re-
peated 50 times and averages are presented in Figure 6. For most cases, Xmap produced well-approximated
reduced maps that also have consistent stress values over the entire period. However, when k=3, its perfor-
mance is somewhat unstable (especially, for waveform data set). In that case, the maintained extreme point
set may be too small to capture a proper boundary structure. However, since the monolithic approach also
performed poorly in the same case, it needs to be further examined before drawing a conclusion.

We also monitor how the size of the extreme point set is increased over time. The objective is two-fold.
First, for the Xmap to be useful in practice, the extreme point set should be small at any given time. In
particular, if its size increases in a strictly linear fashion over time, it will become soon too large to handle.
Second, if the boundary structure of the past data is successfully maintained and shape of data does not
change abruptly with the new data blocks, the extreme point set should be maintained with small increases
in size. Figure 7 illustrates this. Clearly, it is shown that the size of extreme point set is maintained small
in every case.

5 Conclusion and Future Research

This paper discussed a fast dimension reduction of a high dimensional multivariate data stream, and proposed
Xmap as one such effort. In contrast to a naive monolithic approach that is not scalable, it showed that Xmap
effectively produces a projection map by maintaining a substantially small subset from a data stream. A
preliminary empirical results illustrate that Xmap is also competitive to a monolithic approach in producing
distance-preserved reduced maps.

Xmap is still in an early stage. It has to be further improved in several aspects. The size of extreme
set can increase in a linear fashion in some special cases. It is particularly true when the distribution of
data stream (or, how it is spread in some Euclidean space) changes abruptly over time. In such a case,
how to maintain the extreme set in its optimally minimum size needs to be resolved. One approach under
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development is to remove extreme points that fall inside all of the supporting hyperplanes at any given time.

Since the FastMap heuristic is intrinsically sensitive to outliers, Xmap may produce a undesired projection
map. Currently, we are investigating a possibility to make the FastMap heuristic more robust and behave
like principal component analysis [9]. An early investigation showed a positive result. However, further
exploration will be left for future research.
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