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Abstract. Models for deformed proton emitters are reviewed. The raiakmtic coupled-channel
framework with rotational coupling and the adiabatic Nilssorbit model are discussed and com-
pared. An improvement of the adiabatic approach is obtalyethking care of the diagonal part
of the Coriolis coupling. For the description of the protaaioactivity of 1*'Ho, we investigate
the role ofy-vibrational excitations in the daughter nucléd®Dy. It is shown that the coupling to
triaxial degrees of freedom strongly influences theorefioadictions.

INTRODUCTION

Theoretical models applied to the description of non-spghéproton emitters can be
divided into two groups. The core-plus-particle modelscdés the radioactive parent
nucleus in terms of a proton interacting with a core (i.ee, daughter nucleus). Usu-
ally, the core is modeled by some phenomenological collectiodel, e.g., the Bohr-
Mottelson (geometric) model. Depending on the structurthefdaughter nucleus, ro-
tational [1, 2, 3] or vibrational [4, 5] coupling of the preotas assumed. The models
belonging to this group employ the coupled-channel readt@ory which have been
developed for the description of the elastic or inelastattecing.

The second group of models uses the framework of the defosmatimodel. In the
simplest case, the proton resonance corresponds to agantgele resonant (Gamow)
state of a deformed field [6, 7, 8, 9, 10]. This model can be ggized to include BCS
pairing correlations (see these proceedings).

We may refer to the first group of models as weak coupling nealatoupled-channel
models. For the second group of models, we reserve the teaonaace Nilsson-orbit (or
adiabatic) description. The term “adiabatic" requires gplanation. It is very difficult,
if not impossible, to relate both groups of models to eaclemthecause they operate
on different approximation levels. In special situationsyever, the relation between
the two types of models can be revealed. For instance, if onsiders axial-symmetric
nuclei, strong rotational coupling [11], and the degereegabund-state rotational band
in the daughter nucleus, one recovers the resonance Nitsbatnrmodel. So one may
say thatin this casethe adiabatic model is an approximation of the weak-cogption-
adiabatic model. Generally, however, the relation betwwhemodels is not that simple.
For example, the resonance Nilsson-orbit model with a noalaymmetric potential



(i.e., nonzergy deformation) cannot be trivially related to a weak couplmgdel with
non-axial deformation.

If the coupled-channel model with the rotational couplisgapplied to the nucleus
1410, the ground-state decay (half-life time and branchirtipyas poorly described
[3, 2]. There are several explanations possible. For exanitphay be that the Coriolis
mixing is too strong [3]. This can be partly cured if pairingrielation is introduced
(see these proceedings). Another possibility, explorethis work, is the coupling
to triaxial vibrations. Indeed, in particle-rotor calctitans, the best description of the
experimentally observed band structures'®Ho can be explained if deformation
is introduced [12]. In addition, in the neighboritg=74 isotones there are low-lying
2; and 3" levels. We may interpret these states as members of-thierational band.
There are also other indications that in this mass regiomtlabei may have triaxial
shapes [13, 14].

The ground-stat& = 0 rotational band of*Dy has recently been observed [15].
In this work, we assume thaf°Dy also hasKk=2 y-vibrational band. This structure
can be coupled to the ground-state band if the proton-daugtteraction in the body-
fixed system deviates from the axial symmetry. In our weakptinog model we do not
assume, however, that the daughter nucleus has a permadefarmation. Our aim
is to investigate the possibility of triaxial vibrationsoaind the deformed axial shape.
The experimentally observed rotational band of the paranlenis is assumed to be a
K = 7/2~ band [12]. In the strong-coupling picture, this implies fhresence of two
addtional rotational bands #f'Ho with quantum numbers/2+ 2, i.e., K™= 3/2~ and
KT=11/2".

This paper is organized as follows. We will begin with the mew of the weak
coupling model in the case of rotational coupling. We wikithdiscuss the Nilsson-
orbit model and its relation to the weak coupling approaatpdrticular, we consider
the diagonal part of the Coriolis coupling, which was netgddn earlier calculations.
Finally, we present numerical results. Here we show how tstipn of excited states
of the daughter nucleus can influence predictions of the veealpling model. We also
present preliminary results for the proton emission frfiHo assuming the presence
of the y-vibrational band in the daughter nucleus. The final conatuss that the
coupling toy-vibration improves the agreement between the weak-cogptiodel and
experiment.

WEAK COUPLING MODEL: NON-ADIABATIC APPROACH

The model of the parent nucleus describes a single proteraicting with a deformed
core. The model Hamiltonian can be written as

ﬁ2
Hrot: Hd—?nAr —I—V(I',Ol)), (1)

whereH, is the collective Hamiltonian of the daughter nucleus, t#esd term repre-
sents the relative kinetic energy, avids the proton-core interaction, which depends on
the position of the proton and the orientatiom of the core. In the laboratory system,



the daughter proton interaction is given by
V(r,w)=Vd(r, w)+a2V( (r,w)
= 5, VODAY, (1) +3,3, V(1) (DL +D}o) Y, ,(F), ()

where the deformation parameters ageanda, [V\")(r) depends ory]. For the core
we take the rotational-vibrational collective model. Treughter stateg, are given
by the standard ansatz

21 +1
Aue = \/16712(5K,o+1) [DI i+ (=1)'Dy« Xkn,(82)]9:8.). (3

The wave function of the parent nucleus can be written in teakacoupling form

\P‘]M— fl\:(”( )q) (4)
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where the channel function is given by

Ppmikij :;“QIMJI\M@UQ(HMK’ (5)
T

and
Hig = 3 (Im3 Q)X (9 (6)

arises from the coupling of the proton spin with the orbitaj@ar momentum. The
unknown radial functlonsl';IKIJ (r) can be then obtained from the set of coupled-channel
equations:
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Here, ther-independent coupling coefficients can be written in terintghe reduced
nuclear matrix elements
B, (11'K) = (@ |[D|®y,y) (8)

and
C, (IKI'K',a,) = (D [|a,(D% + DA 5)[| Dy .-) 9

The explicit expressions for geometric coefficiedts are given, e.g., in Ref. [16].
The nuclear structure model of the daughter nucleus ertterfotmalism through the
reduced matrix elemeng, andC, .



Weak-coupling model in the body-fixed frame

The ansatz (4) is given in the laboratory frame but the totavevfunction can be
easily transformed to the body-fixed system. Following RET], where thea-decay
was described in the adiabatic limit of the weak-couplingrapch, one obtains:
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(g/IJ{QDﬂ/T,QJrK + (_1)J_jg’7/|f—QD‘|3I,—Q_K> Xkn,(82)]9-S)- (10)

The new radial wave functiongy j(r) are related to the laboratory-system wave
functions through the equation
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In the body-fixed frame the proton daughter interaction is
V1, 0'¢Y) :V(l)(r 6') +a,vi2(r,6'¢)
=5, VIV o(8) +8,3, V(1) [V (0. 9)+Y) ,(0.0)],  (12)

e., it is given by the triaxial average potential. The actiof the Hamiltonian of
the daughter nucleus on the laboratory channel functiortig simple:H,®;,,,\; =
Eik ®ymikij- On the other hand, the action of the daughter’'s Hamiltooiathe wave
function (10) is more complicated:

=3 > o S lag (13)
Kl QQ'
where o4+ 1
(Q,9) = ZZJ 1B (] (JQIK[IQ +K)(jQ'IK|IQ' +K) (14)
and
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For simplicity, we give the coupled-channel equations enlibdy-fixed system in the
case of axial symmetry

RZ [d2  1(1+1)
[W_ r2 }9&9'1 + Z<@/,jQ|V(r,9’)|@/|,j,Q> gé,le'j’
IJI

+ ZAE]JU (QQI)gg,Q’Ij =E Qqij- (16)
Q/



We must emphasize that the coupled-channel equations (7)(1&) are completely
equivalent. We note that under special circumstanggs &re given by the pure rota-
tional formula) the third term of the left hand side of Eq. \ithe rotational energy in
the strong coupling limit [3].

NILSSON-ORBIT MODEL: ADIABATIC APPROACH

In the spirit of the deformed shell model, we assume thattdte ®f the emitted proton
is the lowest resonance single-particle orbit of a deforpeatntial. In the body-fixed
coordinate system the deformed potential is given by Eq. (2 Hamiltonian of the
resonance Nilsson-orbit model contains only the defornadrmgial (12), and it can be

written as )

R
Hyer = ~om ANERVAN (S 0'y). (17)

The wave function of a Nilsson-orbit can be expanded

9aij
Yiet= ) — Yja- (18)
e % =i

For the radial functions, one obtains a set of coupled-chlegguations:

h2 2 11+ =~ : _
2m (_% + )> Oanj (1) + 21 (o VS 24T 100) B (1)
+a2 ZQ’I’j'<@|]{Q|Vd(§¥|@|/j/Q/>g_Q,|,j,(l’) = Eg_Qlj(r)' (19)

For simplicity, let us assume that the daughter nucleusialaxdeformed &, = 0).
The comparison of Egs. (19) and (16) reveals that if the &sh on the left hand side
of (16) is neglected, then the Nilsson-orbit model and thakaeoupling model are
equivalent. This approximation is severe. The term in qaestanishes only if all the
energies of the excited states of the daughter nucleus i@ zero. Only in the case of
extreme degeneracy (or infinite collective moment of i1 the resonance Nilsson-
orbit model related to the weak-coupling model.

Corrected Nilsson-orbit model: inclusion of the diagonal @rt of the
Coriolis coupling

In the above section we have demonstrated that the Nilsgmhroodel (an extension
of the classical Nilsson-orbit picture to narrow resonajég an approximation to the
weak-coupling model. Nevertheless, it has proved to be réy faseful approach for
the description of proton-emitting nuclei. There is alsoeayvpractical reason why it
is useful to study connections between the non-adiabapcoagh and the Nilsson-
orbit description. The number of coupled-channel equatiothe weak-coupling model
quickly increases with the number of active states of thegtter nucleus.



One of the drawbacks of the Nilsson-orbit model is that th@taton energies of the
daughter nucleus are neglected. This is clearly an unpdiyesssumption. The excitation
energies come into play through the action of the opetdfomwhich is given by Egs.
(13) and (14). Since our aim is to avoid the increase of thebmirof coupled-channel
equations, we neglect the non-diagonal part of®heoupling and approximate (13) by

Ok 0l (1)
IM J K,Qlj bod
HW ™ ~ gj gAK,j (Q,Q)fd{]‘,\’ﬁé’mj. (20)

Taking into account the above expression, the coupledreiaguation (16) turns into

R/ & 1141 ‘
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J

- {E_Aéli(gvg) hé,Qlj(r)- (21)

In this way we have introduced an effective excitation epetgpendence in each;j}
channel. Consequently, Egq. (21) introduces dh#gependence into the Nilsson-orbit
model. We have achieved an interesting result. Namelygusie coupled equations
(21) for a fixedQ, we are able to calculate not only the band heae- Q) but also
the excited states of the parent nucleus by putlingQ +1,Q+ 2, ... in (21). We will
refer to the calculations based on (21) as “dynamicallyestdiad Nilsson-orbit model”
or “dynamically corrected adiabatic description” (ADI-O)he standard Nilsson-orbit
description will be referred to as the adiabatic approadblfA

NUMERICAL RESULTS

The numerical tests have been performed for the nuéféti®, viewed as the composite
system of a proton and the daughter nuclE®y (collective core). For the rotational
bands in the daughter nucleus, we have fixed the maximum epin=t12. In the
resonance Nilsson-orbit model, the maximum of the prgtoralue was taken to be
27/2. As for the parameterization of the Woods-Saxon (WS) g@kmve have used the
Chepurnov set employed in Ref. [2].

Dynamically corrected adiabatic approach

For each value oE, = E,,, we determine the WS potential strength in the weak-

coupling model so as to get thHle= %_ state at the experimental value ofil2 MeV.
Having established the single-particle potential, weiedrout the ADI and ADI-D cal-
culations. The position of the resulting resonance is diggdl in Fig. 1. Itis seen that the
real part of the energy calculated in ADI-D is dramaticathypiroved as compared with
ADI. The difference between the ADI-D and the weak-couphliatment is due to the
off-diagonal Coriolis coupling. Since the Coriolis cougiis completely neglected in
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FIGURE 1. The real part of the energy of tlle= %_ resonance if**Ho as a function of the excitation
energyE, of the 2! state of the daughter nucleus. The WS strength has beentetiptseactE, in the
weak-coupling model to reproduce the experime@aialue.

the adiabatic model, the ADI description significantly gges from the weak-coupling
result.

Effect of the structure of the daughter nucleus

The excitation energies of the daughter nucleus are caéclilesing the pure rotational
. 2 . .
expressiorg,; = E—el (I +1). Instead of the moment of inertia parameter, we use the

excitation energy, of the 2+ state int49Dy as a parameter of the calculations. Figure 2
shows the proton haIf-Iifél/2 as a function ok,. Not surprisingly,‘l’l/2 is very sensitive

to the position of the 2 state. Taking the experimentaf 2xcitation energy @02 MeV
[15], one obtainsT1/2=45 msec. If we repeat the weak-coupling calculation in saich
way that the energies of the remaining rotational statetasies from the VMI fit to the
experimental data (not from the pure rotational formutegnl, /2 is reduced to 21 msec

(filled circle in the Fig. 2). This demonstrates tﬁ’@}z is sensitive not only to the correct

position of 2" level but also to the placement of other rotational stateb®taughter
nucleus.

The excited states of the daughter nucleus correspond to @pelosed channels.
To check the importance of the closed channels, we carriedheufollowing weak-
coupling calculation. For the open channels (the @, 4", and 6 states of the
daughter nucleus) we have used the experimental excitatiergies, and for the closed
channels we have taken the energies calculated by the ptatonal formula. This
yields T1/2:31 msec (shown by a filled square in Fig. 2). From this exerais can

conclude that the effect of the closed channels is as impioaiathe open ones.
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FIGURE 2. Half-life of the J = 4~ resonance if*!Ho as a function of the excitation energy of
the 2+ state in*4°Dy. The solid curve shows the result when the excitationgiasrare calculated by the
pure rotational formula. The result obtained by using theeeinental energies of the ground-state band

in 149Dy is marked by a dot. The filled square marks the result obthby assuming that the energies of
closed-channel states are taken from the pure rotatioralfia.

Effect of y-vibrations

We have seen that the structure of the daughter nucleus {l@egexact placement
of rotational members of the ground-state band) has a laftigence onTl/z. If we

assume that the daughter nucléd®y has other excited states, such as a low-lying
y-vibrational band, this will also have a large effect on tlaécualated proton-emission
observables. The coupling of tlyevibrationalK = 2 rotational band to the ground-state
band is possible if the proton-daughter interaction hasraaxal component in the
body-fixed system.

Figure 3 shows results of coupling to tixevibrational band of the daughter nucleus.
Guided by experimental systematics, we assumed the enttigy §=2 bandhead to be
0.789 MeV. The positions of higher-lying states of aband were calculated using the
pure rotational formula. For the ground-state band, we haee the experimental values
of the excitation energies. The deformation paramagavas set to the value of 0.244,
which is consistent with earlier investigations [15, 12iff€rent curves in Fig. 3 display
results of calculations carried out using different numikestates in the~-band. It is
seen that in our preliminary calculations we have not yethed full convergence with
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FIGURE 3. Half-life of theJ = £~ resonance in**Ho as a function of the deformation paramesgr

Results of calculations carried out assuming a differentlmer of active states in theband of'*°Dy are
shown.

respect to the number of states in hband. The trend, however, is such that triaxiality
certainly helps to improve the agreement with the expertaidifietime (4.1 msec).

Our calculations have clearly demonstrated that the streaf the daughter nucleus
strongly influences the results of the non-adiabatic calspleannel model. The descrip-
tion of the proton radioactivity of*Ho is a very challenging task for theory. Different
models have been proposed in order to describe simultalyetneshalf-life time and
branching ratio. Our model shows that the assumption of myce coupling to low-
lying y-vibrational states should be treated very seriously.
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