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Abstract. Models for deformed proton emitters are reviewed. The non-adiabatic coupled-channel
framework with rotational coupling and the adiabatic Nilsson-orbit model are discussed and com-
pared. An improvement of the adiabatic approach is obtainedby taking care of the diagonal part
of the Coriolis coupling. For the description of the proton radioactivity of 141Ho, we investigate
the role ofγ-vibrational excitations in the daughter nucleus140Dy. It is shown that the coupling to
triaxial degrees of freedom strongly influences theoretical predictions.

INTRODUCTION

Theoretical models applied to the description of non-spherical proton emitters can be
divided into two groups. The core-plus-particle models describe the radioactive parent
nucleus in terms of a proton interacting with a core (i.e., the daughter nucleus). Usu-
ally, the core is modeled by some phenomenological collective model, e.g., the Bohr-
Mottelson (geometric) model. Depending on the structure ofthe daughter nucleus, ro-
tational [1, 2, 3] or vibrational [4, 5] coupling of the proton is assumed. The models
belonging to this group employ the coupled-channel reaction theory which have been
developed for the description of the elastic or inelastic scattering.

The second group of models uses the framework of the deformedshell model. In the
simplest case, the proton resonance corresponds to a singe-particle resonant (Gamow)
state of a deformed field [6, 7, 8, 9, 10]. This model can be generalized to include BCS
pairing correlations (see these proceedings).

We may refer to the first group of models as weak coupling models or coupled-channel
models. For the second group of models, we reserve the term resonance Nilsson-orbit (or
adiabatic) description. The term “adiabatic" requires an explanation. It is very difficult,
if not impossible, to relate both groups of models to each other, because they operate
on different approximation levels. In special situations,however, the relation between
the two types of models can be revealed. For instance, if one considers axial-symmetric
nuclei, strong rotational coupling [11], and the degenerate ground-state rotational band
in the daughter nucleus, one recovers the resonance Nilsson-orbit model. So one may
say thatin this casethe adiabatic model is an approximation of the weak-coupling non-
adiabatic model. Generally, however, the relation betweenthe models is not that simple.
For example, the resonance Nilsson-orbit model with a non-axial symmetric potential



(i.e., nonzeroγ deformation) cannot be trivially related to a weak couplingmodel with
non-axial deformation.

If the coupled-channel model with the rotational coupling is applied to the nucleus
141Ho, the ground-state decay (half-life time and branching ratio) is poorly described
[3, 2]. There are several explanations possible. For example, it may be that the Coriolis
mixing is too strong [3]. This can be partly cured if pairing correlation is introduced
(see these proceedings). Another possibility, explored inthis work, is the coupling
to triaxial vibrations. Indeed, in particle-rotor calculations, the best description of the
experimentally observed band structures of141Ho can be explained ifγ deformation
is introduced [12]. In addition, in the neighboringN=74 isotones there are low-lying
2

�
2 and 3

�
levels. We may interpret these states as members of theγ-vibrational band.

There are also other indications that in this mass region thenuclei may have triaxial
shapes [13, 14].

The ground-stateK � 0 rotational band of140Dy has recently been observed [15].
In this work, we assume that140Dy also hasK=2 γ-vibrational band. This structure
can be coupled to the ground-state band if the proton-daughter interaction in the body-
fixed system deviates from the axial symmetry. In our weak-coupling model we do not
assume, however, that the daughter nucleus has a permanentγ deformation. Our aim
is to investigate the possibility of triaxial vibrations around the deformed axial shape.
The experimentally observed rotational band of the parent nucleus is assumed to be a
K � 7

�
2� band [12]. In the strong-coupling picture, this implies thepresence of two

addtional rotational bands in141Ho with quantum numbers 7
�
2 � 2, i.e.,Kπ � 3

�
2� and

Kπ � 11
�
2� .

This paper is organized as follows. We will begin with the overview of the weak
coupling model in the case of rotational coupling. We will then discuss the Nilsson-
orbit model and its relation to the weak coupling approach. In particular, we consider
the diagonal part of the Coriolis coupling, which was neglected in earlier calculations.
Finally, we present numerical results. Here we show how the position of excited states
of the daughter nucleus can influence predictions of the weak-coupling model. We also
present preliminary results for the proton emission from141Ho assuming the presence
of the γ-vibrational band in the daughter nucleus. The final conclusion is that the
coupling toγ-vibration improves the agreement between the weak-coupling model and
experiment.

WEAK COUPLING MODEL: NON-ADIABATIC APPROACH

The model of the parent nucleus describes a single proton interacting with a deformed
core. The model Hamiltonian can be written as

Hrot � Hd �
h̄2

2m

�
r � V � r 	 ω 
 	 (1)

whereHd is the collective Hamiltonian of the daughter nucleus, the second term repre-
sents the relative kinetic energy, andV is the proton-core interaction, which depends on
the position of the protonr and the orientationω of the core. In the laboratory system,



the daughter proton interaction is given by

V � r 	 ω 
 � V � 1� � r 	 ω 
 � a2V � 2� � r 	 ω 

� ∑λ µ V � 1�

λ
� r 
 Dλ

µ0Yλ �µ � r̂ 
 � a2∑λ µ V � 2�
λ

� r 

�
Dλ

µ2 � r̂ 
 � Dλ
µ � 2� Yλ �µ � r̂ 
 	 (2)

where the deformation parameters area0 anda2 [V � 1�
λ

� r 
 depends ona0]. For the core
we take the rotational-vibrational collective model. The daughter statesφIµK are given
by the standard ansatz

φIµK � 2I � 1
16π2 � δK �0 � 1
 �DI �

µK � � � 1
 IDI �

µ � K � χKn2
� a2 
 �g�s� 	 � (3)

The wave function of the parent nucleus can be written in the weak-coupling form

ΨJM � ∑
IKl j

f J
IKl j � r 


r
ΦJMIKl j 	 (4)

where the channel function is given by

ΦJMIKl j � ∑
Ωµ 
 jΩI µ �JM	 � l jΩφIµK 	 (5)

and � l jΩ � ∑
ms
 lm1

2
s� jΩ 	 i lYlm � r̂ 
 χ1� 2 � s
 (6)

arises from the coupling of the proton spin with the orbital angular momentum. The
unknown radial functionsf J

IKl j � r 
 can be then obtained from the set of coupled-channel
equations:

h̄2

2m

�
� d2

dr2 � l � l � 1�
r2 � f J

IKl j � ∑λ I 
 l 
 j 
 Aλ � Il j 	 I � l � j � 	 J 
 Bλ � II � K 
V � 1�
λ

f J
I 
 Kl 
 j 
 � (7)

∑λ I 
 K 
 l 
 j 
 Aλ � Il j 	 I � l � j � 	 J 
Cλ � IKI � K � 	 a2
V � 2�
λ

f J
I 
 K 
 l 
 j 
 � � E � EIK 
 f J

IKl j �
Here, ther-independent coupling coefficients can be written in terms of the reduced
nuclear matrix elements

Bλ � II � K 
 � 
 ΦIK � �Dλ
;0 � �ΦI 
 K 	 (8)

and
Cλ � IKI � K � 	 a2
 � 
 ΦIK � �a2 � Dλ

;2 � Dλ
;� 2 
 � �ΦI 
 K 
 � 	 (9)

The explicit expressions for geometric coefficientsAλ are given, e.g., in Ref. [16].
The nuclear structure model of the daughter nucleus enters the formalism through the
reduced matrix elementsBλ andCλ .



Weak-coupling model in the body-fixed frame

The ansatz (4) is given in the laboratory frame but the total wave function can be
easily transformed to the body-fixed system. Following Ref.[17], where theα-decay
was described in the adiabatic limit of the weak-coupling approach, one obtains:

ΨJM � ∑KΩl j
gJ

K �Ωl j � r �
r

�
2J

�
1

16π2� � �l jΩDJ�

M �Ω�
K � � � 1
 J� j � �l j � ΩDJ�

M � � Ω� K � χKn2
� a2 
 �g�s� 	 � (10)

The new radial wave functionsgJ
K �Ωl j � r 
 are related to the laboratory-system wave

functions through the equation

gJ
K �Ωl j � r 
 � 1

δK �0 � 1∑
I

Î

Ĵ 
 jΩIK �JΩ � K 	 f J
IKl j � r 
 � (11)

In the body-fixed frame the proton daughter interaction is

Vdef� r 	 θ � φ � 
 � V � 1�
def

� r 	 θ � 
 � a2V � 2�
def

� r 	 θ � φ � 

� ∑λ V � 1�

λ
� r 
Y �λ �0 � θ � 
 � a2∑λ V � 2�

λ
� r 
 �Y �λ �2� θ � 	 φ � 
 � Y�λ � � 2� θ � 	 φ � 
 � 	 (12)

i.e., it is given by the triaxial average potential. The action of the Hamiltonian of
the daughter nucleus on the laboratory channel function is very simple:HdΦJMIKl j �
EIK ΦJMIKl j . On the other hand, the action of the daughter’s Hamiltonianon the wave
function (10) is more complicated:

HdΨJM � ∑
Kl j

∑
ΩΩ 
 AJ

Kl j � Ω 	 Ω� 
 gJ
K �Ωl j � r 


r
Φbody

JMKΩ
 l j
	 (13)

where

AJ
Kl j � Ω 	 Ω� 
 � ∑

I

2I � 1
2J � 1

EIK 
 jΩIK �JΩ � K 	 
 jΩ� IK �JΩ� � K 	 (14)

and

Φbody
JMKΩl j

� � 2J � 1
16π2

� � �l jΩDJ�

M �Ω�
K � � � 1
 J� j � �l j � ΩDJ�

M � � Ω� K � χKn2
� a2 
 �g�s� 	 � (15)

For simplicity, we give the coupled-channel equations in the body-fixed system in the
case of axial symmetry

�
h̄2

2m � d2

dr2 �
l � l � 1


r2 � gJ
0�Ωl j � ∑

l 
 j 
 
 � l jΩ �V � r 	 θ � 
 � � l 
 j 
 Ω 	 gJ
0 �Ωl 
 j 


� ∑
Ω 
 AJ

0l j � ΩΩ� 
 gJ
0�Ω 
 l j � E gJ

0�Ωl j � (16)



We must emphasize that the coupled-channel equations (7) and (16) are completely
equivalent. We note that under special circumstances (EIK are given by the pure rota-
tional formula) the third term of the left hand side of Eq. (16) is the rotational energy in
the strong coupling limit [3].

NILSSON-ORBIT MODEL: ADIABATIC APPROACH

In the spirit of the deformed shell model, we assume that the state of the emitted proton
is the lowest resonance single-particle orbit of a deformedpotential. In the body-fixed
coordinate system the deformed potential is given by Eq. (12). The Hamiltonian of the
resonance Nilsson-orbit model contains only the deformed potential (12), and it can be
written as

Hdef � �
h̄2

2m

�
r 
 � Vdef� r 	 θ � φ � 
 � (17)

The wave function of a Nilsson-orbit can be expanded

Ψdef � ∑
Ωl j

ḡΩl j

r
� �l jΩ � (18)

For the radial functions, one obtains a set of coupled-channel equations:

h̄2

2m

�
� d2

dr2 � l � l � 1�
r2 � ḡΩl j � r 
 � ∑l 
 j 
 
 � �l jΩ �V � 1�

def
� � �l 
 j 
 Ω 	 ḡΩl 
 j 
 � r 


� a2∑Ω 
 l 
 j 
 
 � �l jΩ �V � 2�
def

� � �l 
 j 
 Ω 
 	 ḡΩ 
 l 
 j 
 � r 
 � EḡΩl j � r 
 � (19)

For simplicity, let us assume that the daughter nucleus is axially deformed (a2 � 0).
The comparison of Eqs. (19) and (16) reveals that if the last term on the left hand side
of (16) is neglected, then the Nilsson-orbit model and the weak-coupling model are
equivalent. This approximation is severe. The term in question vanishes only if all the
energies of the excited states of the daughter nucleus are set to zero. Only in the case of
extreme degeneracy (or infinite collective moment of inertia) is the resonance Nilsson-
orbit model related to the weak-coupling model.

Corrected Nilsson-orbit model: inclusion of the diagonal part of the
Coriolis coupling

In the above section we have demonstrated that the Nilsson-orbit model (an extension
of the classical Nilsson-orbit picture to narrow resonances) is an approximation to the
weak-coupling model. Nevertheless, it has proved to be a fairly useful approach for
the description of proton-emitting nuclei. There is also a very practical reason why it
is useful to study connections between the non-adiabatic approach and the Nilsson-
orbit description. The number of coupled-channel equations in the weak-coupling model
quickly increases with the number of active states of the daughter nucleus.



One of the drawbacks of the Nilsson-orbit model is that the excitation energies of the
daughter nucleus are neglected. This is clearly an unphysical assumption. The excitation
energies come into play through the action of the operatorHd, which is given by Eqs.
(13) and (14). Since our aim is to avoid the increase of the number of coupled-channel
equations, we neglect the non-diagonal part of theΩ coupling and approximate (13) by

HdΨJM � ∑
Kl j

∑
Ω

AJ
Kl j � Ω 	 Ω 


gJ
K �Ωl j � r 


r
Φbody

JMKΩl j
� (20)

Taking into account the above expression, the coupled-channel equation (16) turns into

h̄2

2m

�
�

d2

dr2 � l � l � 1

r2 � hJ

0�Ωl j � r 
 � ∑
l 
 j 
 
 � �l jΩ �V � 1�

def
� � �l 
 j 
 Ω 	 hJ

0�Ωl 
 j 
 � r 


� �E � AJ
0l j � Ω 	 Ω 
 � hJ

0�Ωl j � r 
 � (21)

In this way we have introduced an effective excitation energy dependence in each (l j )
channel. Consequently, Eq. (21) introduces theJ-dependence into the Nilsson-orbit
model. We have achieved an interesting result. Namely, using the coupled equations
(21) for a fixedΩ, we are able to calculate not only the band head (J � Ω) but also
the excited states of the parent nucleus by puttingJ � Ω � 1	 Ω � 2	 � � � in (21). We will
refer to the calculations based on (21) as “dynamically corrected Nilsson-orbit model"
or “dynamically corrected adiabatic description" (ADI-D). The standard Nilsson-orbit
description will be referred to as the adiabatic approach (ADI).

NUMERICAL RESULTS

The numerical tests have been performed for the nucleus141Ho, viewed as the composite
system of a proton and the daughter nucleus140Dy (collective core). For the rotational
bands in the daughter nucleus, we have fixed the maximum spin to I � 12. In the
resonance Nilsson-orbit model, the maximum of the protonj value was taken to be
27

�
2. As for the parameterization of the Woods-Saxon (WS) potential, we have used the

Chepurnov set employed in Ref. [2].

Dynamically corrected adiabatic approach

For each value ofE2 � E20, we determine the WS potential strength in the weak-

coupling model so as to get theJ � 7
2

� state at the experimental value of 1�19 MeV.
Having established the single-particle potential, we carried out the ADI and ADI-D cal-
culations. The position of the resulting resonance is displayed in Fig. 1. It is seen that the
real part of the energy calculated in ADI-D is dramatically improved as compared with
ADI. The difference between the ADI-D and the weak-couplingtreatment is due to the
off-diagonal Coriolis coupling. Since the Coriolis coupling is completely neglected in
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FIGURE 1. The real part of the energy of theJ �
7
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�
resonance in141Ho as a function of the excitation

energyE2 of the 2
�

state of the daughter nucleus. The WS strength has been adjusted at eachE2 in the
weak-coupling model to reproduce the experimentalQp value.

the adiabatic model, the ADI description significantly deviates from the weak-coupling
result.

Effect of the structure of the daughter nucleus

The excitation energies of the daughter nucleus are calculated using the pure rotational
expressionEI0 � h̄2

2Θ I � I � 1
 . Instead of the moment of inertia parameter, we use the
excitation energyE2 of the 2

�
state in140Dy as a parameter of the calculations. Figure 2

shows the proton half-lifeT1� 2 as a function ofE2. Not surprisingly,T1� 2 is very sensitive

to the position of the 2
�

state. Taking the experimental 2
�

excitation energy 0�202 MeV
[15], one obtainsT1� 2=45 msec. If we repeat the weak-coupling calculation in sucha
way that the energies of the remaining rotational states aretaken from the VMI fit to the
experimental data (not from the pure rotational formula), thenT1� 2 is reduced to 21 msec
(filled circle in the Fig. 2). This demonstrates thatT1� 2 is sensitive not only to the correct

position of 2
�

level but also to the placement of other rotational states ofthe daughter
nucleus.

The excited states of the daughter nucleus correspond to open or closed channels.
To check the importance of the closed channels, we carried out the following weak-
coupling calculation. For the open channels (the 0

� 	 2
� 	 4

�
, and 6

�
states of the

daughter nucleus) we have used the experimental excitationenergies, and for the closed
channels we have taken the energies calculated by the pure rotational formula. This
yields T1� 2=31 msec (shown by a filled square in Fig. 2). From this exercise we can
conclude that the effect of the closed channels is as important as the open ones.
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in 140Dy is marked by a dot. The filled square marks the result obtained by assuming that the energies of
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Effect of γ-vibrations

We have seen that the structure of the daughter nucleus (e.g., the exact placement
of rotational members of the ground-state band) has a large influence onT1� 2. If we

assume that the daughter nucleus140Dy has other excited states, such as a low-lying
γ-vibrational band, this will also have a large effect on the calculated proton-emission
observables. The coupling of theγ-vibrationalK � 2 rotational band to the ground-state
band is possible if the proton-daughter interaction has a non-axial component in the
body-fixed system.

Figure 3 shows results of coupling to theγ-vibrational band of the daughter nucleus.
Guided by experimental systematics, we assumed the energy of theK=2 bandhead to be
0.789 MeV. The positions of higher-lying states of theγ-band were calculated using the
pure rotational formula. For the ground-state band, we haveused the experimental values
of the excitation energies. The deformation parametera0 was set to the value of 0.244,
which is consistent with earlier investigations [15, 12]. Different curves in Fig. 3 display
results of calculations carried out using different numberof states in theγ-band. It is
seen that in our preliminary calculations we have not yet reached full convergence with
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respect to the number of states in theγ-band. The trend, however, is such that triaxiality
certainly helps to improve the agreement with the experimental lifetime (4.1 msec).

Our calculations have clearly demonstrated that the structure of the daughter nucleus
strongly influences the results of the non-adiabatic coupled-channel model. The descrip-
tion of the proton radioactivity of141Ho is a very challenging task for theory. Different
models have been proposed in order to describe simultaneously the half-life time and
branching ratio. Our model shows that the assumption of dynamical coupling to low-
lying γ-vibrational states should be treated very seriously.
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