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Abstract

Structure of exotic radioactive nuclei having extreme neutron-to-proton
ratios is different from that around the stability line. This short review
discusses the progress in modeling of exotic nuclei in the nuclear “Terra
Incognita”. The consistent theoretical description of weakly bound sys-
tems requires a synergy between nuclear structure and nuclear reaction
methods.

1 Introduction

Low-energy nuclear physics is undergoing a renaissance. Experimentally, there
has been a technological revolution in the radioactive nuclear beam (RNB) ex-
perimentation. The next-generation tools invite us on the journey to the vast
territory of nuclear landscape which has never been explored by science. Hand
in hand with experimental developments, a qualitative change in theoretical
modeling is taking place. Due to the progress in computer technologies and
numerical algorithms, it has became exceedingly clear that the unified micro-
scopic understanding of the nuclear many-body system is no longer a dream.

During recent years, we have witnessed substantial progress in many areas
of theoretical nuclear structure. Effective field theory offers hope for a link
between QCD and nucleon-nucleon forces. New interactions have been devel-
oped which, together with a powerful suite of ab-initio approaches, provide
a quantitative description of light nuclei. For heavy systems, global modern
shell-model approaches and self-consistent mean-field methods offer a level of



accuracy typical of phenomenological approaches based on parameters locally
fitted to the data. By exploring connections between models in various regions
of the chart of the nuclides, nuclear theory aims to develop a comprehensive,
unified theory of the nucleus across the entire nuclear landscape.

From a theoretical point of view, short-lived exotic nuclei far from stability
with “abnormal” neutron-to-proton ratios offer a unique test of those aspects
of the many-body theory that depend on the isospin degrees of freedom [1].
The challenge to microscopic theory is to develop methodologies to reliably
calculate and understand the origins of unknown properties of new physical
systems, physical systems with the same ingredients as familiar ones but with
totally new and different properties. The hope is that after probing the limits
of extreme isospin, we can later go back to the valley of stability and improve
the description of normal nuclei.

2 Nuclear structure theory: questions and challenges

Theoretical nuclear structure deals with the nuclear many-body problem in
the very finite limit of particle number. In the non-relativistic limit, the goal
is to solve the many-body Schrodinger equation with the nuclear Hamiltonian
H:

HU = E. (1)

Unlike other areas of the many-body problem (atomic physics, condensed mat-
ter physics), nuclear physics is still struggling to understand the origin of the
inter-nucleonic force which produces nuclear binding. Although it is clear that
the nucleon-nucleon (NN) interaction has its roots in quark-gluon dynamics,
the microscopic derivation is not yet in place. In addition, due to strong in-
medium effects, additional complications arise when one tries to derive the
effective interaction in the heavy nucleus. This brings us to the first major
scientific question pertaining to Eq. (1): What is the effective nuclear Hamilto-
nian? In this context, some specific issues related to the RNB experimentation
are: What is the (N — Z) and A dependence (i.e., isovector and isoscalar den-
sity dependence) of the effective NN interaction? What is the NN interaction
dependence on spin degrees of freedom? What is the nuclear matter equation
of state?

In this context, significant progress in the area of the bare nucleon-nucleon
force [2] is worth noting. In addition to several excellent phenomenological
NN forces (both non-local and local) fitted to the two-body data, new inter-
actions have been obtained in the framework of chiral perturbation theory (or
low-momentum expansion) [3, 4]. In addition, three-nucleon forces have been



derived in the chiral effective field theory [5]. The chiral forces are highly
nonlocal; hence it is difficult to use them in ab-initio quantum Monte Carlo
calculations [6].

The second major challenge pertaining to Eq. (1) — What is the nature of
the nucleonic matter? — concerns the properties of the many-body wave func-
tion W. Here, the specific fundamental questions are: What is the microscopic
mechanism of nuclear binding? Which combinations of protons and neutrons
make up a nucleus? What is the single-nucleonic motion in a very neutron-rich
environment? What are the collective phases of nucleonic matter? What is the
nature of the collective modes of the nucleus (a finite fermion system having
a pronounced surface)? What are the relevant collective degrees of freedom?
How to understand microscopically the large-amplitude nuclear collective mo-
tion (fusion, fission, coexistence phenomena)? Most of these questions are not
new. Still, the microscopic answer is missing.

3 The territory of nucleonic matter

Figure 1 shows the vast territory of various domains of nuclear matter charac-
terized by the neutron excess, (N — Z)/A, and the isoscalar nucleonic density
(p = pn + pp). In this diagram, the region of finite (i.e., particle-bound) nu-
clei extends from the neutron excess of about —0.2 (proton drip line) to 0.5
(neutron drip line). The next-generation RNB facilities will provide a unique
capability for accessing the very asymmetric nuclear matter and for compress-
ing neutron-rich matter approaching density regimes important for supernova
and neutron star physics that are indicated in Fig. 1.

Measurements of neutron skin and radii at RNB facilities will enable us to
build an intellectual bridge between finite nuclei and bulk nucleonic matter.
Indeed, the thickness of the skin in a heavy nucleus depends on the pressure
of neutron-rich matter. The same pressure supports a neutron star against
gravity. Thus, models with thicker neutron skins often produce neutron stars
with larger radii [8] (see also Ref. [9]). This suggests an inverse relationship:
the thicker the neutron-rich skin of a heavy nucleus, the thinner the solid crust
of a neutron star. It is an extrapolation of 18 orders of magnitude from the
neutron radius of a heavy nucleus (several fm) to the approximately 10 km
radius of a neutron star. Yet both radii depend on our incomplete knowledge
of the density functional of the neutron-rich matter.

The nuclear equation of state (EOS) describes the possibility of compress-
ing nuclear matter. It plays a central role in nuclear structure and in heavy
ion collisions. It also determines the static and dynamical behavior of stars,
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Figure 1: Diagram illustrating the range of nucleonic densities and neutron excess of impor-
tance in various contexts of the low- and intermediate-energy nuclear many-body problem.
The territory of various domains of nucleonic matter is characterized by the neutron excess
and the nucleonic density. The full panoply of bound nuclei comprises the vertical ellipse.
Densities accessible with different reactions, and the properties of neutron star layers, are
indicated. The new-generation RNB facilities will provide a unique capability for accessing
very neutron-rich nuclei — our best experimentally accessible proxies for the bulk neutron-rich
matter in the neutron star crust. They will also enable us to compress neutron-rich matter
in order to explore the nuclear matter equation of state — essential for the understanding of
supernovae and neutron stars. (Based on Ref. [7].)

especially in supernova explosions and in neutron star stability and evolu-
tion. Unfortunately, our knowledge of the EOS, especially at high densities
and/or temperatures, is very poor. In nuclear collisions at RIA induced by
neutron-rich nuclei, a transient state of nuclear matter with an appreciable
neutron-to-proton asymmetry, as well as large density, can be created. This
will offer the unique opportunity to study the N/Z-dependence of the EOS,
crucial for the supernova problem.



3.1 How to extrapolate to neutron-rich matter

Unfortunately, the theoretical knowledge of the equation of state of pure neu-
tron matter is poor; the commonly used energy-density functionals give differ-
ent predictions for neutron matter. Figure 2 illustrates difficulties with making
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Figure 2: Predicted two-neutron separation energies for the even-even Sn isotopes using
several microscopic models based on effective nucleon-nucleon interactions and obtained with
phenomenological mass formulas (shown in the inset at top right). (Taken from Ref. [10].)

theoretical extrapolations into neutron-rich territory. It shows the two-neutron
separation energies for the even-even Sn isotopes calculated in several micro-
scopic models based on different effective interactions. Clearly, the differences
between forces are greater in the neutron-rich region than in the region where
masses are known. Therefore, the uncertainty due to the largely unknown
isospin dependence of the effective force (in both particle-hole and particle-
particle channels) gives an appreciable theoretical “error bar” for the position
of the drip line. Unfortunately, the results presented in Fig. 2 do not tell us
much about which of the forces discussed should be preferred since one is deal-
ing with dramatic extrapolations far beyond the region known experimentally.
However, a detailed analysis of the force dependence of results may give us
valuable information on the relative importance of various force parameters.
Many insights can be obtained from microscopic calculations of neutron
matter using realistic nucleon-nucleon two-body and three-body forces [11, 12].
These calculations demonstrate that, due to the large nn scattering length, the
nuclear energy density functional must diverge at low densities (contrary to



what is used in current self-consistent calculations). This result will certainly
be helpful when constraining realistic energy density functionals.

Another difficulty when extrapolating from finite nuclei to the extended
nuclear matter is due to the diffused neutron surface in neutron-rich nuclei.
As discussed in Ref. [13], the nuclear surface cannot simply be regarded as a
layer of nuclear matter at low density. In this zone the gradient terms (absent
in the nuclear matter) are as important in defining the energy relations as
those depending on the local density.

4 Self-consistent mass table

Self-consistent methods based on density-dependent effective interactions have
achieved a level of sophistication and precision which allows analyses of exper-
imental data for a wide range of properties and for arbitrarily heavy nuclei.
For instance, a self-consistent deformed mass table has been recently developed
[14] based on the Skyrme energy functional. The resulting rms error on bind-
ing energies of 1700 nuclei is around several hundred keV, i.e., is comparable
with the agreement obtained in the shell-correction approaches.

Microscopic mass calculations require a simultaneous description of particle-
hole, pairing, and continuum effects — the challenge that only very recently
could be addressed by mean-field methods. Very recently we have developed
methods [15] to approach the problem of large-scale deformed HFB calcula-
tions by using the local-scaling point transformation [16, 17] that allows us to
modify asymptotic properties of the deformed harmonic oscillator wave func-
tions. Such calculations can be optimized to take advantage of parallel com-
puting. (For example, it takes only one day to calculate the full self-consistent
even-even mass table considering prolate, oblate, and spherical shapes!) Our
large-scale mass calculations will take into account a number of improvements:

e Implementation of the exact particle number projection before variation

[18, 19].

e Improvement of the density dependence of the effective interaction, in-
cluding: (i) better treatment of the low-density dependence [12], (ii)
corrections beyond the mean-field and three-body effects [20], and (iii)
the surface-peaked effective mass [21].

e Proper treatment of the time-odd fields [22].

e Inclusion of dynamical zero-point fluctuations associated with the nuclear
collective motion [23, 24].



The resulting universal energy density functional will be fitted to nuclear
masses, radii, giant vibrations, and other global nuclear characteristics.

5 Continuum shell-model

The major thoretical challenge in the microscopic description of weakly bound
nuclei is the rigorous treatment of both the many-body correlations and the
continuum of positive-energy states and decay channels. Weakly bound states
or resonances cannot be described within the closed quantum system formal-
ism. For bound states, there appears a virtual scattering into the continuum
phase space involving intermediate scattering states. Continuum coupling of
this kind affects also the effective nucleon-nucleon interaction. For unbound
states, the continuum structure appears explicitly in the properties of those
states. The consistent treatment of continuum in multi-configuration mixing
calculations is the domain of the continuum shell model (CSM) (see Ref. [25]
for a review).

The impact of the particle continuum was discussed in the early days of the
multiconfigurational SM in the middle of the last century. However, thanks
to the success of the ‘standard’ SM in terms of interacting nucleons (assumed
to be perfectly isolated from an external environment of scattering states), the
continuum-related matters had been swept under the rug. An example of
a problem is the so-called Thomas-Ehrman shift [26] appearing in, e.g., the
mirror nuclei *C, N, which is a salient effect of a coupling to the continuum
depending on the position of the respective particle emission thresholds. In
the following, we discuss two recent developments in the area of the CSM.

5.1 Shell-Model Embedded in the Continuum
In the Shell Model Embedded in the Continuum (SMEC) [27, 25], all coupling

matrix elements between different discrete states, different scattering states, as
well as between discrete and scattering states, are calculated using the realistic
effective SM interaction. Below, we discuss certain features of the coupling to
the particle continuum in the example of binding energy systematics.

In SMEC, the localized many-body states forming a ()-subspace are ob-
tained by solving a standard SM problem for the Hamiltonian Hgg. Asymp-
totic channels made of (A — 1)-particle localized states and one nucleon in the
scattering state are contained in P-subspace. The residual coupling (Hpg)
between these two subspaces is given by the zero-range interaction including
the spin-exchange term. An effective Hamiltonian including the coupling to



the continuum is energy-dependent:
H(E) = Hoq + HorGy (E)Hrq (2)

where ng—)(E) is a Green function for the motion of a single nucleon in P.
The energy scale is settled by the one-nucleon emission threshold E(thv) [27].
For F > Et) 4 is a complex-symmetric matrix, while for E < E) it is
hermitian like in the ordinary SM. The ground state (g.s.) continuum coupling
correction to the binding energy is given by [28]:

Feorr = <(I)g,s.|7'[ — HQQ|(I)g.s.>- (3)

The g.s. wave function in the parent nucleus (N, 7) is coupled to different
channel wave functions, which are determined by the motion of an unbound
neutron relative to the daughter nucleus (N — 1,7) in a certain SM state
CI)EN_I). Figure 3 shows the neutron number dependence of E.., in oxygen
isotopes for (i) B of SMEC (solid line), and for (ii) £ fixed arbitrarily
at 0 or 4 MeV. In the present studies, we use the full sd valence space for
N < 20, and the full pf space for N > 20. All asymptotic channels composed
of SM states are included in these studies.
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Figure 3: Neutron number dependence of Foopr (3) to the SM g.s. energy for neutron-

rich oxygen isotopes. The solid line is obtained for one-neutron emission threshold E,(Lthr)

calculated in SMEC for each nucleus. The dotted lines with squares and triangles are
obtained for ES™ fixed at 0 and 4 MeV, respectively (from Ref. [28]).

A non-linear average behavior of F..(N), seen in Fig. 3, has a double
origin. For a fixed value of E{") the continuum coupling induces an effective



change 6V,T=1 ~ (V(””))Q/leT;l of the T' = 1 matrix elements of the two-body
interaction V;lT;l This dependence, which is well seen for the matrix elements
involving the Ods/, orbit, can be taken into account by a phenomenological
correction of the T = 1 two-body monopole terms in the effective two-body
interaction. More important is the change of the average behavior of Fio.
due to the strong dependence of F o on Effhr). Close to the neutron drip
line, this dependence leads to an effective enhancement of the strength of the
nn-continuum coupling which cannot be corrected by the N-independent phe-
nomenological correction of the two-body monopole terms. N-dependence of
the two-body monopoles has been also recently advocated by Zuker [29] as a
result of an approximation of the monopoles of the realistic interactions in-
cluding a three-body force in the standard framework of the standard SM.
Figure 3 clearly demonstrates that the N-dependence of the monopole Hamil-
tonian may have different physical origins and, in particular, it comes about
quite naturally as a result of the coupling between () and P subspaces. On
top of this average behavior, one can see an odd-even staggering (OES) of
FEeorr(N). In particular, the OES near the one-neutron drip line (see the curve
for B = 0) is a salient feature of the 7' = 1 continuum coupling. If E{thv)
is calculated in SMEC for each nucleus, the OES is inverted because E{") in

an odd-N nucleus is smaller than in even-N neighbors.

5.2 Gamow Shell Model

Recently, the multiconfigurational CSM in the complete Berggren basis, the
so-called Gamow Shell Model (GSM), has been formulated [30, 31]. The s.p.
basis of GSM is given by the Berggren ensemble [32] which contains Gamow
states (or resonant states and the non-resonant continuum).

The resonant states are the generalized eigenstates of the time-independent
Schrodinger equation which are regular at the origin and satisfy purely out-
going boundary conditions. They correspond to the poles of the S matrix in
the complex energy plane lying on or below the positive real axis. One may
see here a two-subspace concept of Feshbach reappearing, with the subspace
() B consisting of the Gamow states in the complex energy plane, and the sub-
space Pg containing the non-resonant continuum. In the GSM framework,
the number of particles in the scattering continuum is not predetermined, but
it results from a variational calculation in the Hilbert space spanned by all
Slater determinants in (Jp and Pp subspaces. Hence, GSM can also be ap-
plied to Borromean systems for which A- and (A — 2)-nucleon systems are
particle-stable but the intermediate (A — 1)-system is not. GSM is a natural



generalization of the SM concept for the open quantum systems. And, as such,
it is a tool par excellence for nuclear structure studies. A description of many-
body wave functions at large distances, as needed in nuclear reaction studies,
even though feasible within the GSM formalism, may be rather cumbersome.
For that purpose, the coupled-channel method used in SMEC to describe the
asymptotic channels is far more accurate.

5.3 Completness relation involving Gamow states

There exist several completeness relations involving resonant states. In the
heart of GSM is the Berggren completeness relation [32] :

S )l + s igldk = 1 4)

where |u,,) are the Gamow states (both bound states and the decaying resonant
states lying between the real k-axis and the complex contour L) and |uy) are
the scattering states on L. The resonant states are normalized according to
the squared radial wave function and not to the modulus of the squared radial
wave function. This is a consequence of the analytical continuation which is
used to introduce the normalization of Gamow states. In practical applications,
one has to discretize the integral in (4). Such a discretized Berggren relation
is formally analogous to the standard completness relation in a discrete basis
of L*-functions and, in the same way, leads to the eigenvalue problem H|W¥) =
E|V¥). However, as the formalism of Gamow states is non-hermitian, the matrix
H is complex symmetric. The discretized Berggren basis can be a starting
point for establishing the completeness relation in the many-body case in full
analogy with the standard SM in a complete (discrete) basis of L*-functions.

One obtains : )
L 2R (5)

where |U,) = |¢y--- ¢n) are the N-body Slater determinants, and |¢,,) are
the resonant (bound and decaying) and scattering (contour) s.p. states. The
approximate equality in Eq. (5) is a consequence of the continuum discretiza-
tion. As in the case of s.p. Gamow states, the normalization of Gamow-Slater
determinants is given by the squares of SM amplitudes : Y, ¢? = 1 and not
by the squares of their absolute values.



5.4 Determination of many-body bound and resonance states

In a standard SM, one often uses the Lanczos method to find the low-energy
eigenstates (bound states) in very large configuration spaces. This popular
method is unfortunately useless for the determination of many-body resonances
because of a huge number (continuum) of surrounding many-body scattering
states, many of them having lower energy than the resonances. A practical
solution to this problem is the following procedure [30]:

e In the first step, one performs the pole approximation; i.e., the Hamilto-
nian is diagonalized in a smaller basis consisting of s.p. resonant states
only. Here, some variant of the Lanczos method can be applied. The
diagonalization yields the first-order approximation to many-body reso-
nances |U;)) where index i (i = 1,..., N) enumerates all eigenvectors
in the restricted space. These eigenvectors serve as starting vectors (piv-
ots) for the second step of the procedure.

e In the second step, one includes couplings to non-resonant continuum
states in the Lanczos subspace generated by [W.)(© (5 € [1,..., N]).

e Finally, one searches among the M solutions |W;..), (k=1,..., M), for
the eigenvector which has the largest overlap with |W;)(©),

5.5 Example of the eigenvalue spectrum in ?°O

In the following, we shall show that this procedure allows for an efficient deter-
mination of physical states within the set of all eigenvectors of a given Lanczos
subspace. Figure 4 shows the GSM eigenvalue spectrum in the complex en-
ergy plane for the 07 states of 2°0. While the two lowest (bound) states can
be simply identified by inspection, for the higher-lying states it is practically
impossible to separate the resonances from the non-resonant continuum. How-
ever, the procedure outlined above makes it possible to identify unambiguously
the many-body resonance states.

The many-body resonances should be stable with respect to small defor-
mations of the contour; i.e., they should not depend on the deformation of
the basis. This observation offers an independent criterion for identifying res-
onance states. Fig. 5 shows the effect of a small deformation of the contour on
the stability of selected 0% states in 2°0. As expected, only the states which
have previously been identified as resonances are stable with respect to small
changes of the contour; the states belonging to the non-resonant continuum
‘walk’ in the complex energy plane following the contour’s motion.
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Figure 4: Complex energies of the 0% states in 2°0 obtained by the diagonalization of the
GSM Hamiltonian. One- (1n) and two-neutron (2n) emission thresholds are indicated. The
physical bound and resonance states are matched by squares. The remaining eigenstates
represent the non-resonant continuum (from Ref. [31]).

5.6 GSM Study of Helium Isotopes

A description of neutron-rich helium isotopes, including Borromean nuclei
68He, is a challenging theoretical problem. The nucleus *He is a well-bound
system with the one-neutron emission threshold at 20.58 MeV. On the con-
trary, the nucleus *He is a broad resonance. The nucleus ®He, which consists
of two neutrons outside *He, is bound with the two-neutron emission threshold
at 1.87 MeV. The first excited 2] state in °He at 1.8 MeV is neutron-unstable
with a width I' = 113 keV.

In our GSM calculations, the s.p. configuration space includes both res-
onances 0Ops/y, Opy/, and the two associated complex continua ps/, and p;/;
which are discretized with 5 points each. At present, the principal limitation
of GSM is due to the explosion of the number of configurations as compared
to the standard SM. For each Gamow state (bound or resonant) of quantum
numbers (¢, j) in the single-particle basis, one should include the correspond-
ing discretized continuum, i.e., instead of dealing with one shell (¢, j); one has
to consider a set of shells [(£, 7)), (¢, 7)) ... (£, 7)()], where n is the num-
ber of points along the discretized contour (¢, 7). The possibility of dealing
with this problem is to adopt the techniques borrowed from the Density Ma-
trix Renormalization Group method [33]. Figure 6 shows the lowest energy
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Figure 5: The effect of small changes in the contour on the stability of resonant and non-
resonant 07 states in 2°0. Top: the contour in the complex-k plane corresponding to the
0d3/2 continuum. The direction of the contour’s deformation is indicated by an arrow. The
calculations were performed for four contours, each divided into nine segments; only the
first and maximally-deformed contours are shown. Bottom: the resulting shifts in positions
of many-body states corresponding to the complex energy region of Fig. 4 marked by a
dotted line. It is seen that the states identified as resonant are very stable with respect to
small changes of the contour while the states representing the non-resonant continuum move
significantly in the direction indicated by an arrow (from Ref. [31]).

states of helium isotopes calculated with the surface delta interaction with the
strength Vspr = 1670 MeV-fm®. The Opa/2, Op1j2 s.p. resonances are gener-
ated by a Woods-Saxon potential with the parameters chosen to reproduce
experimental energies and widths of the 3/27 and 1/2] resonances of *He.

It is found that the non-resonant continuum contributions are always es-
sential and, in some cases (e.g., ®?He), they dominate the structure of the g.s.
wave function. Moreover, the wave function components having many neutrons
in the non-resonant continuum give an essential contribution to the binding



energy. Without the non-resonant (contour) states, the predicted g.s. energy
of ®He is +2.08 MeV. The inclusion of scattering states lowers the binding en-
ergy to —1.6 MeV. GSM calculations reproduce the most important feature of
68He: the ground state is particle bound, despite the fact that all the basis stales
lie in the continuum. The odd-N isotopes of "?He are calculated to be wide

° sp. basis: SHe
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Figure 6: Experimental (EXP) and calculated (GSM) binding energies of °~%He as well as
energies of J™ = 2% states in He and 3He. The resonance widths are indicated by shading.
The energies are given with respect to the core of *He.

neutron resonances. The neutron separation energy anomaly, i.e., the increase
of one-neutron separation energy when going from ®He to ®He, is reproduced.
This anomaly is explained in GSM by a large contribution from non-resonant
continuum states. This generic mechanism, expected to be present in loosely
bound systems, may give rise to the formation of multineutron Borromean
systems, changing the drip line into a porous drip zone.

6 Conclusions

The main objective of this brief review was to discuss various challenges in
theoretical nuclear structure, especially in the context of RNB physics. There
are many unique features of exotic nuclei that give prospects for entirely new
phenomena likely to be different from anything we have observed to date.
New-generation data will be crucial in pinning down a number of long-standing
questions related to the effective Hamiltonian, nuclear collectivity, and prop-
erties of nuclear excitations.

The material contained in this paper was obtained in collaboration with J.

Dobaczewski, N. Michel, J. Okolowicz, M. Stoitsov, and J. Terasaki. This work
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