
CCA
Common Component Architecture

1Terascale Supernova Initiative Project Meeting9 February 2003 1Terascale Supernova Initiative Project Meeting9 February 2003

An Update on the Common
Component Architecture

David E. Bernholdt
Oak Ridge National Laboratory

In collaboration with the CCA Forum

bernholdtde@ornl.gov
Research supported by the Mathematics, Information and Computational Sciences Office,

Office of Advanced Scientific Computing Research, U.S. Dept. of Energy.
Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725.

CCA
Common Component Architecture

2Terascale Supernova Initiative Project Meeting9 February 2003

Important Note:

I begin with a review of the CCA.

I assume you know this stuff and
will speed through it to avoid

boring you.

Please feel free to ask questions
or just slow me down at any time!

CCA
Common Component Architecture

3Terascale Supernova Initiative Project Meeting9 February 2003

What is the CCA?

• A component model specifically designed for high-
performance scientific computing

• Supports both parallel and distributed applications
• Designed to be implementable without sacrificing

performance
• Minimalist approach makes it easier to componentize

existing software

• A tool to enhance the productivity of scientific
programmers
– Make the hard things easier, make some intractable things

tractable
– Not a magic bullet

CCA
Common Component Architecture

4Terascale Supernova Initiative Project Meeting9 February 2003

Addressing Productivity Issues
with Components

• Reuse & Interoperability
– Component models support and promote R & I
– Interface standardization still very important, burden on user

• Multiple languages
– CCA developing Babel: Fortran, C, C++, Java, Python as

peers

• Size/complexity of code
– Component models promote a Lego block/”plug and play”

approach to large codes

• Coupling of codes (multi-scale, multi-physics, etc.)
– Natural extension of component-based applications

CCA
Common Component Architecture

5Terascale Supernova Initiative Project Meeting9 February 2003

CCA and Commodity Component
Environments

• “Commodity” environments include CORBA, COM,
Enterprise JavaBeans

• Minimize adoption overhead
– Make it easy to componentize legacy software

• Minimize performance impact
– Allow tightly-coupled in-process components

• Support for tightly-coupled parallel computing
– Commodity envs are focused on distributed
– Distributed is nice, but parallel is critical

• Support languages and types (and platforms) for
science
– Fortran, complex numbers, arrays, etc.

CCA
Common Component Architecture

6Terascale Supernova Initiative Project Meeting9 February 2003

• Port (aka interface)
– Procedural interface (not just dataflow!)
– Like C++ abst. virtual class, Java interface
– Uses/provides design pattern

• Component
– A unit of software deployment/reuse (i.e. has interesting functionality)
– Interacts with the outside world only through well-defined interfaces
– Implementation is opaque to the outside world

• Framework
– Holds components during application composition and execution
– Controls the “exchange” of interfaces between components (while ensuring

implementations remain hidden)
– Provides a small set of standard services to components

• CCA spec doesn’t specify a framework per se, so components can be constructed
to provide framework-like services

Basic CCA Terminology

Integrator

Result Fun

Linear
Function

Fun

CCA
Common Component Architecture

7Terascale Supernova Initiative Project Meeting9 February 2003

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

8Terascale Supernova Initiative Project Meeting9 February 2003

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Example

Components

CCA
Common Component Architecture

9Terascale Supernova Initiative Project Meeting9 February 2003

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

10Terascale Supernova Initiative Project Meeting9 February 2003

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

11Terascale Supernova Initiative Project Meeting9 February 2003

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

12Terascale Supernova Initiative Project Meeting9 February 2003

Existing Code → Components

• Component environments
rigorously enforce interfaces

• Can have several versions of
a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods (usually trivial)
– Tell framework what ports it

uses and provides
• Invoking methods on other

components requires slight
modification to “library” code

Integrator

Integrator library code
(slightly modified)

Framework interaction
code (new)

CCA
Common Component Architecture

13Terascale Supernova Initiative Project Meeting9 February 2003

Framework Mediates
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

Assembly Phase
Execution Phase
Assembly Phase

CCA
Common Component Architecture

14Terascale Supernova Initiative Project Meeting9 February 2003

Importance of Provides/Uses
Pattern for Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun
Uses
Port

Provides
Port

Network
Connection

CCA
Common Component Architecture

15Terascale Supernova Initiative Project Meeting9 February 2003

“Direct Connection” Maintains
Local Performance

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table
• Calls between components equivalent to a C++ virtual

function call: lookup function location, invoke
– Cost equivalent of ~2.8 F77 or C function calls
– Such costs should guide decisions about granularity and

decomposition for componentization

• All this happens “automatically” – user just sees high
performance

• Description reflects Ccaffeine implementation, but similar
or identical mechanisms are in other direct connect fwks

CCA
Common Component Architecture

16Terascale Supernova Initiative Project Meeting9 February 2003

Framework Stays “Out of the
Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

• Each process loaded with the
same set of components wired
the same way

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

CCA
Common Component Architecture

17Terascale Supernova Initiative Project Meeting9 February 2003

Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

CCA
Common Component Architecture

18Terascale Supernova Initiative Project Meeting9 February 2003

Babel Features

Scientific Interface Def. Lang. (SIDL)
• Objects: Interfaces, Abstract Classes,

Concrete Classes
• Methods: all public; virtual, static, final
• Mode: in, out, inout (like CORBA)
• Types: bool, char, int, long, float,

double, fcomplex, dcomplex,
array<Type,Dimension>, enum,
interface, class

• Babel includes…
– Code generator
– Runtime (linked into CCA

framework)
• Implemented using C-based

internal object representation (IOR)
• Server side: wrap implementation

in Babel-generated code to allow
calling from any language via IOR

• Client side: Use SIDL interface
definition to generate stubs to call
from client language to IOR

• Strives to allow natural-looking
code in each supported language

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

CCA
Common Component Architecture

19Terascale Supernova Initiative Project Meeting9 February 2003

What’s New?

• CCA specification & tools are evolving
– Spec has been stable for routine use for some time, but is

changing
– Ccaffeine framework now supports Babel

• Language interoperability improving
– Babel Fortran (F90+) support
– Chasm provides limited interop (F90-C++ only), but more

complete F90 support

• Tutorial and example components
• More scientific components
• Real applications!

CCA
Common Component Architecture

20Terascale Supernova Initiative Project Meeting9 February 2003

Progress in Support for
Fortran90+

Babel
–Languages interoperate as peers
–Contact: Tom Epperly (LLNL)

•Version 0.8.0 (January) includes
initial F90 support
–Basically F77, but with distinctions
between F77 and F90

•Next release (~April) supports
derived types (expressible in
SIDL) and cleaner interface using
derived types

•Future release: making use of
array descriptors

Chasm
–F90/C++ interoperability only
–Contact: Craig Rasmussen (LANL)

•Reads source to help generate
interfaces
–Still requires human attention to
get everything correct

•Provides very natural expression
of CCA in Fortran

•Better F90 support than Babel
currently

Babel and Chasm will leverage each other as much as possible

CCA
Common Component Architecture

21Terascale Supernova Initiative Project Meeting9 February 2003

Tutorials and Example
Components

• CCA tutorials are available
– Offered at each CCA Forum quarterly meeting since January

2002
– Also at ACTS Collection Workshop, Los Alamos Computer

Science Institute Symposium, and SC2002
– Slides from each tutorial available online
– Integrator application example source code available online

• Integrator example and SC02 components to be
released in RPM form (RedHat 8.0) by March

CCA
Common Component Architecture

22Terascale Supernova Initiative Project Meeting9 February 2003

Scientific Components

• Many components available or under development
– Various services
– Mesh mgmt & discretization
– Linear algebra
– Integration
– Optimization
– Parallel data description and redistribution
– Visualization
– Performance evaluation

• Serve both as examples and for use in scientific
applications

CCA
Common Component Architecture

23Terascale Supernova Initiative Project Meeting9 February 2003

A Component-Based Simulation and
Analysis Facility for Reacting Flows

• Developed a host of
components, scientific and
mathematical, to form a toolkit
for assembling flame
simulations

– Integrator, spatial
discretizations, chemical rates
evalutator, transport property
models, timers etc.

– Structured adaptive mesh,
load-balancers, error-
estimators (for
refining/coarsening)

– In-core, off-machine, data
transfers for post-processing

• Jaideep Ray and Sophia
Lefantzi (SNL)

• James Kohl (ORNL)
• Sameer Shende (U. Oregon)

• Components are usually in C++ or
wrappers around old F77 code

• Kernel for a 3D, adaptive mesh low
Mach number flame simulation
capability in SNL, Livermore

CCA
Common Component Architecture

24Terascale Supernova Initiative Project Meeting9 February 2003

Scientific Summary

• H2-Air ignition on a structured adaptive mesh, with an operator-
split formulation

• RKC for non-stiff terms, BDF for stiff
• 9-species, 19-reactions, stiff mechanism
• 1cm x 1cm domain; max resolution = 12.5 microns
• TAU for timing.

Evolution of the
temperature field

CCA
Common Component Architecture

25Terascale Supernova Initiative Project Meeting9 February 2003

Wiring Diagram for the Combustion
Code

CCA
Common Component Architecture

26Terascale Supernova Initiative Project Meeting9 February 2003

Animation of the Temperature Field

CCA
Common Component Architecture

27Terascale Supernova Initiative Project Meeting9 February 2003

Contact Points
• http://www.cca-forum.org
• Mailing lists: http://www.cca-forum.org/mailman/listinfo/

– cca-forum (general CCA discussions)
– cca-forum-announce (announcements)
– cca-fortran (CCA Fortran support, including Babel)
– Also babel-users@llnl.gov (majordomo)

• Key CCA Contacts

rasmussn@lanl.govLANLCraig RasmussenChasm

bernholdtde@ornl.govORNLDavid BernholdtApplications Integration
and TSI Liaison

tepperly@llnl.govLLNLTom EpperlyBabel Fortran Support

kohlja@ornl.govORNLJim KohlMxN Data Redistribution

mcinnes@anl.govANLLois McInnesScientific Data Components
kumfert@llnl.govLLNLGary KumfertFrameworks
rob@sandia.govSNLRob ArmstrongLead PI

CCA
Common Component Architecture

28Terascale Supernova Initiative Project Meeting9 February 2003

Discussion Points
• What should we be doing in preparation to adopt

the CCA?
– Learn about Babel and Chasm
– Start thinking about code architecture and interfaces
– Look for other efforts to steal from (or team with)

• “Off the shelf” components
• “Standardized” interfaces for common functionality

• What more can be done to develop the TSI-CCA
collaboration?
– Become involved in/with CCA!

• Tutorials
• CCA Forum meetings
• Mailing list discussions

– Start experimenting!
• Easiest to discuss/work on something concrete (with each other

and with CCA people)

